Influence of fabric architecture on crushing behavior of semi-hexagonal composite structures under axial loading

2018 ◽  
Vol 49 (2) ◽  
pp. 162-180 ◽  
Author(s):  
Zhenyu Wu ◽  
Maolin Wang ◽  
Zhiping Ying ◽  
Xiaoying Cheng ◽  
Xudong Hu

This paper reports the mechanical response of semi-hexagonal part with three different multi-layer reinforcements. Unidirectional, plain woven and orthogonal fabric under quasi-static axial compression were considered. Meso-scale finite element numerical models with failure criterion were also established to simulate the onset and development of internal damage during the compression process. There were two different crush-failure modes occurring in the crush tests of the three different composite samples: a splaying mode for samples with unidirectional fabric, a buckling mode for samples with 3D orthogonal woven fabric and a mixture mode of both buckling and splaying for samples with the plain woven fabric. The samples reinforced by unidirectional fiber have the highest specific energy absorption and lowest peak loading, whereas the samples by 3D orthogonal fabric present the lowest specific energy absorption and highest peak loading. It was also demonstrated by a numerical model that the existence of Z-binder suppresses the delamination by restraining the expanding of warp and weft yarns. The comparison of numerical results and experimental data indicates that the structure of reinforcement has a significant role in the mechanical performance of textile composite.

1987 ◽  
Vol 109 (1) ◽  
pp. 72-77 ◽  
Author(s):  
D. W. Schmueser ◽  
L. E. Wickliffe

This paper presents the results of an impact testing program that was conducted to characterize the energy absorption and failure characteristics of selected composite material systems and to compare the results with aluminum and steel. Composite tube specimens were constructed using graphite/epoxy (Gr/Ep), Kevlar/epoxy (K/Ep), and glass/epoxy (Gl/Ep) prepreg tape and were autoclave cured. Vertical impact and static compression tests were performed on 56 tubes. Tests results for energy absorption varied significantly as a function of lay-up angle and material type. In general, the Gr/Ep tubes had specific energy absorption values that were greater than those for K/Ep and Gl/Ep tubes having the same ply construction. Angle-ply Gr/Ep and K/Ep tubes had specific energy absorption values that were greater than those for 1024 steel tubes. Gr/Ep and Gl/Ep angle-ply tubes exhibited brittle failure modes consisting of fiber splitting and ply delamination, whereas the K/Ep angle-ply tubes collapsed in an accordian buckling mode similar to that obtained for metal tubes.


2020 ◽  
pp. 109963622092765 ◽  
Author(s):  
Fukun Xia ◽  
Yvonne Durandet ◽  
T X Yu ◽  
Dong Ruan

Corrugated sandwich panels are widely used in engineering applications for their excellent energy absorption and lightweight. In this research, the mechanical response of aluminum corrugated sandwich panels subjected to three-point bending is investigated experimentally, numerically, and theoretically. In the experiments, the sandwich panels were loaded under two conditions, namely base indentation and node indentation. A parametric study is conducted by ABAQUS/explicit to investigate the effects of geometric configurations (corrugation angle, core height, and core thickness) on the deformation mode, peak force, and energy absorption. Both peak force and specific energy absorption vary with the geometric parameters. Theoretical models are further developed to predict the force–displacement curves of the panels under the two loading conditions. The theoretically predicted crushing force is in good agreement with both the experimental and simulated results. Finally, the non-dominated sorting genetic algorithm II is adopted to optimize the geometric configuration to improve the specific energy absorption and reduce the weight of corrugated sandwich panels.


2019 ◽  
Vol 54 (10) ◽  
pp. 1281-1304 ◽  
Author(s):  
JE Chambe ◽  
C Bouvet ◽  
O Dorival ◽  
JF Ferrero

The purpose of this study is to evaluate and compare the ability of various composite structures to dissipate the energy generated during a crash. To this end, circular composite tubes were tested in compression in order to identify their behavior and determine their absorbing capabilities using the specific energy absorption (energy absorbed per unit weight). Several composite tubular structures with different materials and architectures were tested, including hybrid composition of carbon–aramid and hybrid configuration of 0/90 UD with woven or braided fabric. Several inventive and experimental trigger systems have been tested to try and enhance the absorption capabilities of the tested structures. Specific energy absorption values up to 140 kJ.kg−1 were obtained, achieving better than most instances from the literature, reaching around 80 kJ.kg−1. Specimens with 0°-oriented fibers coincidental with the direction of compression reached the highest specific energy absorption values while those with no fiber oriented in this direction performed poorly. Moreover, it has consequently been established that in quasi-static loading, a unidirectional laminate oriented at 0° and stabilized by woven plies strongly meets the expectations in terms of energy dissipation. Incidentally, an inner constrained containment is more effective in most cases, reducing the initial peak load without drastically reducing the specific energy absorption value.


2014 ◽  
Vol 23 (2) ◽  
pp. 096369351402300
Author(s):  
Ping Zhang ◽  
Liang-Jin Gui ◽  
Zi-Jie Fan ◽  
Jing-Yu Liu

This paper presented an experimental study on the low-velocity impact response of triaxial braided composite circular tubes, which were fabricated with S-glass/epoxy composite. The impact responses were recorded and analyzed in terms of impact load-displacement curves and specific energy absorption. In addition, four basic failure modes called delaminating, splaying, fragmental fracture and progressive folding were founded. The levels of the mean impact load and specific energy absorption (SEA) are determined by the energy absorption mechanisms, which are related to the dominant failure modes of the tubes. In general, delamination which exhibits the poor energy absorbing performance is the dominant failure mode for all the specimens. Impact test results showed that all three types of tubes had almost the same SEA. Compared to the quasi-static test results, the first peak load and the mean load decrease at about 50% and 10% respectively, SEA generally decreases at an average level 10%.


2020 ◽  
Vol 54 (27) ◽  
pp. 4253-4268
Author(s):  
Mou Haolei ◽  
Xie Jiang ◽  
Zou Jun ◽  
Feng Zhenyu

To research the failure of carbon fiber-reinforced composite laminated specimens, the tensile tests and compressive tests were conducted for [90]16 and [0]16 specimens, and the shear tests were conducted for [±45]4s specimens, and the microscopic failure mechanisms were observed by scanning electron microscopy. To research the failure and energy absorption of different thin-walled structures with different layups, the quasi-static axial crushing tests were conducted for [±45/0/0/90/0]s and [0/90]3s circular tubes, [0/90]3s and [±45]3s square tubes, [0/90]4s and [±45]4s sinusoidal specimens, and the internal failure were further investigated by 3D X-ray scan. Based on the load-displacement curves, the energy absorptions were evaluated and compared according to specific energy absorption and peak crushing force, and the relationships between failure modes and specific energy absorption, peak crushing force were further researched. The results show that the macroscopic failure modes are the collective results of varieties of microscopic failure mechanisms, such as fiber fracture, matrix deformation and cracking, interlamination and intralamination cracks, cracks propagation, etc. The [±45/0/0/90/0]s circular tube shows the transverse shearing failure mode with high specific energy absorption. The [±45]3s square tube and [±45]3s sinusoidal specimen show the local buckling failure mode with low specific energy absorption. The [0/90]4s sinusoidal specimen, [0/90]3s circular tube, and [0/90]3s square tube show the lamina bending failure mode with medium specific energy absorption. The failure mode of thin-walled structure can be changed by reasonable layups design, and the energy absorption can further be improved.


2021 ◽  
Author(s):  
Zhenyang Gao ◽  
Hua Sun ◽  
Hongze Wang ◽  
Yi Wu ◽  
Tengteng Sun ◽  
...  

Abstract For numerous engineering applications, there is a high demand for protective lightweight structures with outstanding energy absorption performance and the ability to prevent catastrophic structural failures. In nature, most species have evolved with hierarchical biological structures that possess novel mechanical properties, including ultrahigh specific energy absorption, progressive laminated failure modes, and ability for crack arrestment, in order to defend themselves from hostile environments. In this study, a novel protective metamaterial having spherical hollow structures (SHSs) was developed with different hierarchical microstructures. An artificial failure mode engineering strategy was proposed by tailoring the microstructures of SHS unit cells. To demonstrate the effectiveness of the proposed method, a composite hierarchical SHS lattice structure was developed using a biomimetic laminated failure mode and through a hardening mechanism, mimicking crystal grain boundaries. The quasi-static compressive results indicated a significant improvement in the specific energy absorption, an enhanced plateau stress magnitude, and an obvious delay in the densification stage for the composite hierarchical SHS lattice owing to the constraining effect of its mesoscale grain boundaries and an increased number of intensively engineered laminated failure levels. This novel type of metamaterial was shown to be immensely beneficial in designing lightweight protective aerospace components such as turbine blade lattice infills.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110232
Author(s):  
Hussein Dalfi ◽  
Anwer J Al-Obaidi ◽  
Hussein Razaq

Recently, high tensile fibres composite laminates (i.e. glass composite laminates) have been widely used in the civil and military applications due to their superior properties such as lightweight, fatigue and corrosion resistance compared to metals. Nevertheless, their brittle fracture behaviour is a real downside for many sectors. In the present study, the impact of the hybridisation of Kevlar woven layers with glass woven layers on the reducing the strain failure problem in pure glass woven laminates is investigated. In this work, multi-layers Kevlar-glass with different stacking sequences have been used to prepare the hybrid composite laminates using vacuum–assisted resin moulding method. The influence of the layers hybridisation on the mechanical performance of composites laminates was investigated using tensile strength tests. Furthermore, finite element analysis is performed to analyse the mechanical response of the hybrid composite laminates using Abaqus software. The elastic constants of woven fabric layers in the numerical study were predicted through geometric model based on the textile geometry and analytical method in order to assert accuracy of the predicted elastic constants. The experimental results showed that the hybrid composite laminates tend to fail more slowly than glass woven laminates, which illustrates low strain to failure. In the theoretical part of the study, it was found that the proposal model can be useful to capture the mechanical behaviour and the damage failure modes of hybrid laminates. Thus, the catastrophic failure can be avoided in these laminates.


2020 ◽  
pp. 152808372097442
Author(s):  
Vikas Khatkar ◽  
Bijoya Kumar Behera

In advanced engineering applications, machining of composite material is a must to perform necessary assembly operations. This work deals with the investigation of fabrication potential of Glass/epoxy composites reinforced with different textile structures in the form of E-glass based chopped fiber, unidirectional (UD) tow, bidirectional (2D) plain woven, four different 3D woven orthogonal solid structures with varying binder percentage and one 3D woven angle interlock structure. The Influence of reinforcement architecture on tensile strength, drilling damage, bearing response, specific energy absorption (bending), and spring stiffness of composites structure was investigated. Damage analysis due to drilling was primarily assessed in terms of delamination whereas bearing strength, bearing strain and common bearing failure were examined from the bearing strength test. Different bearing failure was observed for different composite structures; UD composite was noticed with complete shear out failure while chopped failed due to tearing and 2D structure reinforced composite predominantly failed due to tearing and delamination failure. 3D orthogonal composite failed due to tearing in the warp direction and shear out in weft direction whereas 3D interlock failed due to tearing in both warp and weft direction. 3D orthogonal based composite structure exhibited the highest specific energy absorption (SEA) along with improved spring stiffness and therefor it could be a potential material for automotive leaf spring application.


2019 ◽  
Vol 794 ◽  
pp. 202-207
Author(s):  
Rafea Dakhil Hussein ◽  
Dong Ruan ◽  
Guo Xing Lu ◽  
Jeong Whan Yoon ◽  
Zhan Yuan Gao

Carbon fibre composite tubes have high strength to weight ratios and outstanding performance under axial crushing. In this paper, square CFRP tubes and aluminium sheet-wrapped CFRP tubes were impacted by a drop mass to investigate the effect of loading velocity on the energy absorption of CFRP/aluminium tubes. A comparison of the quasi-static and dynamic crushing behaviours of tubes was made in terms of deformation mode, peak crushing force, mean crushing force, energy absorption and specific energy absorption. The influence of the number of aluminium layers that wrapped square CFRP tubes on the crushing performance of tubes under axial impact was also examined. Experimental results manifested similar deformation modes of tubes in both quasi-static and dynamic tests. The dynamic peak crushing force was higher than the quasi-static counterpart, while mean crushing force, energy absorption and specific energy absorption were lower in dynamic tests than those in quasi-static tests. The mean crushing force and energy absorption decreased with the crushing velocity and increased with the number of aluminium layers. The impact stroke (when the force starts to drop) decreased with the number of aluminium layers.


Sign in / Sign up

Export Citation Format

Share Document