A temperature measurement method for testing lubrication system or revealing scuffing failure mechanism of spur gear

Author(s):  
Chang Jihua ◽  
Liu Shaojun ◽  
Hu Xiaozhou

In order to meet the needs of temperature measurement for testing lubrication system or revealing scuffing failure mechanism of spur gear, a temperature measurement method analysis is carried out. This method shifts the high temperature region to a position convenient for measurement. And the measurement target including the highest temperature of gear and its location are also shifted to the new position. Considering the change of gear temperature field caused by thermal barrier covering the end face, the temperature difference of the target measurement position and the direct measurement position is analyzed by finite element method. Taking a spur gear pair as an example, its temperature field is obtained in the thermal steady state before and after shifting of temperature. The results show that temperature of the target measurement position and the direct measurement position is same in distribution, and temperature of the direct measurement position is higher than the temperature in the target measurement position. The highest temperature of the direct measurement position increases by 2.5%. As a result, considering the increment as the safety margin, it is not conservative to estimate the temperature in the target measurement position by the measured temperature data in the direct measurement position. And the measured temperature data also will help to find out the location of the highest temperature of gear in the target measurement position. Meanwhile, the accidental risk of scuffing failure can be avoided during experimental research in testing lubrication system or revealing scuffing failure mechanism by this temperature measurement method. And the comparison of the analytical results with the experimental measurement data shows good agreement.

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 641
Author(s):  
Jingqing Zhang ◽  
Yong Shang ◽  
Xuehang Li ◽  
Yali Dong ◽  
Yanling Pei

Synchronous measurement of full-field temperature and deformation at high temperature especially more than 1273 K is of much significance especially for part applications of turbine structures and materials. Non-contact optical methods attract more and more attention, however, current methods all face different challenges, such as strong light reflection on the surface of the specimen, disturbing radiation from environment, complex equipment setup, limited measured temperature not higher than 900 ℃ and so on. In this work, we develop an innovative technique to overcome some current problems. The measurement system employing an ultraviolet (UV) imaging system is composed of a scientific complementary metal oxide semiconductor (sCMOS) camera, a lens and a UV bandpass filter. The UV bandpass filter was used for thermal radiation elimination to acquire high quality images at elevated temperatures for deformation field calculation suitable for digital image correlation (DIC) method. The UV sensitive sCMOS camera without using active illumination was employed to collect enough UV radiation energy and eliminate the interference of the external ambient light, which is applicable for high accuracy temperature field measurement. Our system can realize the synchronous capture of image and temperature acquisition with passive UV imaging system at temperature not lower than 1473K. The feasibility of the method was verified through heating molybdenum (Mo) and Ni-based superalloy IC21 materials. The temperature fields of Mo measured by the established imaging system up to 1835 K with error less than 0.25% showed the effectiveness for temperature measurement. The estimated deformation and temperature field of Ni-based superalloy IC21 up to 1473 K with measured temperature error less than 0.5% demonstrated well the great potential of the UV imaging system in simultaneous measurement of temperature and deformation fields at elevated temperatures.


Author(s):  
Dahu Zhu ◽  
Beizhi Li ◽  
Jingzhu Pang ◽  
Jianguo Yang ◽  
Dan Zhang

Temperature measurement is employed for research in grinding and for process monitoring. Because of the difficulty in arrangement of thermocouples, temperature measurement in grinding presents a number of challenges, particularly in high speed cylindrical-plunge grinding. Based on existing literature, only one thermocouple is considered for measuring the maximum temperature in the grinding contact arc, without considering the overall temperature variation. In this paper, a new measurement method, named four K-type thermocouples are proposed aslant along the direction of the width of workpiece which is developed for measuring the overall contact arc in high speed cylindrical-plunge grinding. It is shown that the temperature increases to the maximum with a sharp gradient, then decreases due to the strengthening of cooling effect and the decrease of depth of cut, which is consistent with previous study. The measured temperature signal reveals the generation rule and dissipation rule of grinding heat. The influence of grinding parameters on the temperature is also discussed in detail in the paper.


2008 ◽  
Vol 575-578 ◽  
pp. 532-538 ◽  
Author(s):  
Guo Ming Zhu ◽  
Yong Lin Kang ◽  
Wei Chen ◽  
Guang Ting Ma

In the H-beam rolling process, the deformations and temperature field of workpiece significantly influence the mechanical properties due to the change of product microstructure. Prediction of them is important for the groove design and passes sequences. To get the deformation behavior and the temperature field of workpiece, commercial FEM program LS-DYNA has been used to analyze the whole process of H-beam rolling. The approach is based on 3D thermal mechanical coupled finite element method. The rolling process is divided into several units for calculation. The mesh of workpiece is rebuilt in the simulation for reducing the influence of element distortion. The result shows that, the temperature at the wed to flange position maintains the highest during the whole rolling process, while area of the web the lowest. After the rolling, temperature difference is above 150K between the web’s surface and flange’s inside surface, approximate 130K on the flange’s outside surface and 200K in the cross section. The simulation results show good agreement with the measured temperature data.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhuoyan Chen ◽  
Dongjian Zheng ◽  
Jiqiong Li ◽  
Xin Wu ◽  
Jianchun Qiu

Temperature is one of the factors affecting the safety operation of concrete arch dams. To accurately reconstruct the temperature field of the concrete arch dam online based on the temperature data of several typical dam sections, this paper proposes the AdaBoost-ANN algorithm. The algorithm uses artificial neural network (ANN) to establish a training set of the measured temperature data and the temperature field of the concrete arch dam obtained by the three-dimensional finite element model; these trained artificial neural networks are used as weak classifiers of the AdaBoost algorithm. Then, the AdaBoost-ANN algorithm is used to establish the mapping relationship between the measured temperature data and the temperature field, and the online reconstruction of the temperature field of the concrete arch dam is realized. The case study shows that the temperature field of the concrete arch dam can be accurately established by AdaBoost-ANN algorithm based on limited temperature observation data. The algorithm is more time-saving and labor-saving than the finite element method and is convenient for online reconstruction of the temperature field and assessment of the safety status of the concrete arch dam.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Min Zhang ◽  
Xianhua Yao ◽  
Junfeng Guan ◽  
Lielie Li

In order to solve the problem of insufficient accuracy of early temperature field caused by the change of hydration rate under different temperatures, the theoretical formula of finite element calculation based on temperature influence factor is put forward and then the theory is tested. On this basis of this theory, the early temperature field of a RCC dam is numerically simulated and the variation law of concrete hydration rate under different temperatures is studied. The numerical simulation results are compared with the results without considering the temperature effect and the measured temperature data. The results show that the theoretical results are in agreement with the measured temperature data, and the accuracy and applicability of the theoretical formula are proved.


2017 ◽  
Vol 8 (2) ◽  
pp. 131-141 ◽  
Author(s):  
A. V. Polyakov ◽  
T. D. Prokopenkova

Providing quality and reliable operation as well as temperature monitoring of modern systems are directly related on the use of innovative fiber optic technology based on the concept of so-called distributed and quasi-distributed sensors having large linear dimensions, in which the optical fiber is both sensor and data channel. Existing fiber optic sensors based on stimulated Raman scattering and stimulated Brillouin scattering have relatively high measurement error, long and complicated measurement method, high cost. The purpose of this paper was to develop an automated quasi-distributed fiber optic recirculating temperature measurement system using wavelength division multiplexing technology. Measurement method based on the registration arising due to temperature changes of the frequency of single optical pulses recirculating at adjacent wavelengths. Thus there is a periodic signal restoration on waveform, amplitude and duration. The sensing element is a segment of a multimode silica fiber coated with metal, separated spectrally selective elements, which are mainly offered to use dichroic mirrors. With the help of the developed mathematical model that takes into account the temperature dependence of the coefficient of linear expansion and Young’s modulus of the fiber, the spectral and temperature dependence of the refractive index, the chemical composition of the fibers, the type of metal coating system response function was calculated, which allows to evaluate the sensitivity and measurement accuracy. These studies determined: number of measuring sections (8), the maximal measured temperature (500 °C), the sensitivity (3,28 Hz/°C), the measurement error (±0,2 °C), and the optimum beginning time measurement after starting circulation (15 min), and counting time of the frequency meter (1 s). Carried out estimations have shown that the proposed measuring system can outperform existing analogues on set specifications.


2021 ◽  
Vol 11 (9) ◽  
pp. 3913
Author(s):  
Kaifeng Zheng ◽  
Jinguang Lü ◽  
Yingze Zhao ◽  
Jin Tao ◽  
Yuxin Qin ◽  
...  

The turbine blade is a key component in an aeroengine. Currently, measuring the turbine blade radiation temperature always requires obtaining the emissivity of the target surface in advance. However, changes in the emissivity and the reflected ambient radiation cause large errors in measurement results. In this paper, a three-wavelength radiation temperature measurement method was developed, without known emissivity, for reflection correction. Firstly, a three-dimensional dynamic reflection model of the turbine blade was established to describe the ambient radiation of the target blade based on the real surface of the engine turbine blade. Secondly, based on the reflection correction model, a three-wavelength radiation temperature measurement algorithm, independent of surface emissivity, was proposed to improve the measurement accuracy of the turbine blade radiation temperature in the engine. Finally, an experimental platform was built to verify the temperature measurement method. Compared with three conventional colorimetric methods, this method achieved an improved performance on blade temperature measurement, demonstrating a decline in the maximum error from 6.09% to 2.13% and in the average error from 2.82% to 1.20%. The proposed method would benefit the accuracy in the high-temperature measurement of turbine blades.


Author(s):  
Andrew M. Kasozi ◽  
Raj V. Siddharthan ◽  
Rajib Mahamud

Two-dimensional (2D) transient numerical thermal modeling was undertaken using ansys fluent v12.1 software to estimate distribution of soil backfill temperatures in a typical mechanically stabilized earth (MSE) wall. The modeling was calibrated using field-measured temperature data from the Tanque-Verde MSE wall in Tucson, Arizona (AZ) in which computed temperature data were found to be within ±5% of the field data. The calibrated model predictions for Las Vegas, Nevada (NV) showed an overall average soil backfill temperature of 34.3 °C relative to a maximum outside surface temperature of 51.6 °C. Such a high average soil backfill temperature calls for modification of design procedures since conventional designs are based on geosynthetic tensile strength determined at 20 °C.


2014 ◽  
Vol 721 ◽  
pp. 523-526
Author(s):  
Xiang Li Wang ◽  
Yu Gui Nian ◽  
Dong Dong Cai

As one of the important parameters for the production process of industry, agriculture and military, temperature can affect the production efficiency, energy efficiency and people’s living standards. The temperature measurement has been widely noted and studied. Firstly, the software can receive the temperature of measuring point, and store the value in the database. Secondly, when the temperature exceeds the specified range, the software will give an alarm. The software can view the historical temperature data and draw the curve of temperature. Finally, the software can query and modify the information of the measuring point, such as number, name, normal temperature range of equipment, etc. Based on the existing research results, this paper describes the design and implement of wireless temperature measurement software for electrical equipment.


2021 ◽  
pp. 33-39
Author(s):  
Makar S. Stepanov ◽  
rina G. Koshlyakova

The accelerated heat treatment during steel products hardening technology has been investigated. The possibility of measuring the temperature of steel products by thermoelectric platinum-platinum-rhodium thermocouple under microarc heating conditions is analyzed. During the experiments, working junctions of two S-type thermocouples: working and standard, were coined into the sample surface at the same level. The free thermocouples ends were connected to a digital multimeter and a personal computer. It was determined that 5 factors affect the measurement results: the electric current strength in the circuit, carbon powder, calibration, number of repeated measurement cycles, and a thermocouple copy. When planning the experiment, the concept of conducting a step-by-step nested experiment was used. Variance analysis method was used to process the experimental results. The measurement method precision parameters were calculated: repeatability and reproducibility. A linear mathematical model linking the measurement method reproducibility index with the measured temperature value has been obtained. A linear mathematical model is obtained that relates the reproducibility index of the measurement method to the measured temperature value. A measuring system for the experimental determination of the temperature of a steel sample is proposed and its application is justified for different electric current densities on the sample surface and varying duration of microarc heating. The possibilities of selecting and controlling the microarc heating modes depending on the required temperature of the heat treatment of the steel product are determined.


Sign in / Sign up

Export Citation Format

Share Document