Effect of chemical heat treatment on cavitation erosion resistance of stainless steel

Author(s):  
Hongqin Ding ◽  
Shuyun Jiang ◽  
Jiang Xu

The purpose of this paper is to study the effect of chemical heat treatments on cavitation erosion resistance of the 304 stainless steel. Three types of diffusion layers are prepared on the 304 stainless steel using gas nitriding, gas carburizing, and carbonitriding treatments. Phase composition and surface microstructure of the diffusion layers are characterized by X-ray diffraction and scanning electron microscopy. And then, the cavitation erosion behavior of the diffusion layers are tested and compared with the one of the 304 stainless steel. The cavitation test is performed in an ultrasonic vibration system integrated with an electrochemical workstation. The mass loss, scanning electron microscopic morphology, and electrochemical test are adopted to assess the surface damage of the diffusion layers. A measurement for the mechanical properties of the diffusion layers shows that the hardness and the elastic modulus of the gas nitrided diffusion layer, carbonitrided diffusion layer, carburized diffusion layer, and 304 stainless steel are 5.3 GPa and 260 GPa, 4.2 GPa and 236 GPa, 4.0 GPa and 210 GPa, 2.5 GPa and 193 GPa, respectively. A cavitation erosion test of 14 h shows that mass loss of the gas nitrided diffusion layer, carbonitrided diffusion layer, carburized diffusion layer, and 304 stainless steel is 5.19 mg, 8.97 mg, 14.37 mg, and 6.62 mg, respectively. The electrochemical test results also indicate that the gas nitrided diffusion layer has a higher corrosion resistance than the carburized diffusion layer, carbonitrided diffusion layer, and stainless steel under cavitation erosion condition. As a conclusion, the gas nitrided diffusion layer is capable of enhancing the cavitation erosion resistance of the stainless steel, while the carburized diffusion layer and carbonitrided diffusion layer increases the mass loss of the stainless steel under cavitation erosion condition.

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Shuyun Jiang ◽  
Hongqin Ding ◽  
Jiang Xu

In this technical brief, a Cr3Si nanocrystalline film was deposited on 304 stainless steel (SS) substrate using a double glow discharge plasma technique. The film was characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, nanohardness tester, and scratch tester. The as-deposited film with a thickness of 5 μm consisted of A15 structured Cr3Si phase with an average grain size of 8 nm. The hardness values of the film were determined to be 26 GPa, which was ten times greater than 304 SS. A self-designed ultrasonic vibration cavitation erosion apparatus was employed to evaluate the cavitation erosion resistance of the Cr3Si film. The results showed that after cavitation tests of 30 hrs, the erosion mass loss of the film was only 60% of that for 304 SS substrate. SEM observation of the erosion surfaces indicated that the surface damage degree of the Cr3Si film is significantly less than that of 304 SS.


2011 ◽  
Vol 189-193 ◽  
pp. 498-502
Author(s):  
Sheng Hong ◽  
Yu Ping Wu ◽  
Hong Bin Sun ◽  
Yuan Zheng ◽  
Qi Fan Dai ◽  
...  

Two different martensite stainless steel 1Cr17/Carbide-based coatings (C-1 and C-2) were prepared by electrical arc spraying technique. Microstructures of the coatings were investigated by optical microscopy (OM), X-ray diffraction (XRD), scanning election microscopy (SEM). The results show that the C-2 coating has higher hardness and finer structure than the C-1 coating. The cavitation erosion resistance was tested using a China GB6383-86 standard method in fresh water. The cavitation erosion mass loss of the C-2 coating was only 55 percent that of the C-1 coating eroded 15h, the C-2 coating has better cavitation erosion resistance.


2016 ◽  
Vol 879 ◽  
pp. 2255-2260 ◽  
Author(s):  
C.H. Zhang ◽  
Y.F. Jia ◽  
M. Guan ◽  
C.L. Wu ◽  
J.Z. Tan ◽  
...  

Fe-based alloy modified layers were prepared on 304 stainless steels by high-energy pulse laser-like cold welding cladding technique. The microstructure, composition and phase constituents of the cladding layers were analyzed using SEM, EDS and XRD, respectively. The microhardness, friction-wear and cavitation erosion resistance were also investigated using microhardness tester, pin-on-disk wear-testing machine and ultrasonic vibrator. Experimental results showed that Fe-based alloy modified layer was mainly composed of α-Fe matrix phase and skeleton-like Cr23C6, Cr7C3 carbide reinforced phase, which was dispersively distributed into α-Fe matrix. The microhardness and friction coefficients of Fe-based alloy modified layer were 600HV and 0.4, respectively, indicating an improved wear resistance. The weight loss rate and average erosion depth of the modified layer was 1/5 and 1/10 that of 304 stainless steel in 3.5% NaCl solution after 5-h cavitation erosion test, respectively. The erosion crater depth of the modified layer was uniform, indicating that the cavitation erosion resistance of the modified layer was much better than that of the 304 stainless steel.


2011 ◽  
Vol 479 ◽  
pp. 81-89
Author(s):  
J.M. Chen ◽  
Ju Liang He ◽  
K.C. Chen ◽  
J.T. Chang

Gas tungsten arc welding with the TiNi intermetallic filler material was used to weld overlays onto the SUS 304 stainless steel and AISI 1045 medium carbon steel. The composition, hardness and cavitation erosion resistance of overlays on both kinds of steel was compared. The microstructure analysis results show that the elements from substrate materials diluted the overlay and caused the formation of dendrite structures in overlays. The crystalline phases in overlays on SUS 304 are TiNi-B2, TiNi-B19’, TiNi3 and Ti3Ni4, while those in overlay on AISI 1045 are TiNi-B2 and TiNi3. The multiple phase structures, precipitation of hard carbides and oxides formed in the overlays increases the hardness of the overlays 3-fold over the TiNi filler rod and steel substrate. This significantly increases the cavitation erosion resistance of substrate steels. The corrosion resistant overlays also enhance the cavitation erosion corrosion resistance of substrates in corrosive 3.5 wt% NaCl solution.


Author(s):  
Hongqin Ding ◽  
Shuyun Jiang ◽  
Jiang Xu

A ZrC nanoceramic coating was prepared on the bare 316 stainless steel for improving the cavitation erosion resistance by the double glow discharge sputter technique. The phase constitution and surface microstructure of the ZrC nanoceramic coating were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. A 10-µm-thick ZrC nanoceramic coating exhibited equiaxed grains with an average grain size of 9 nm. The adhesion strength and mechanical properties for the ZrC nanoceramic coating were evaluated by scratch test and nanoindentation. The hardness value of the ZrC nanoceramic coating was about four times that of the uncoated 316 stainless steel. The cavitation erosion behavior of the ZrC nanoceramic coating in tap water was characterized by the combination of an ultrasonic vibration system with an electrochemical workstation. The volume loss, erosion depth, scanning electron microscope morphology, and electrochemical test were adopted to assess the surface damage of the ZrC nanoceramic coating. The results show that the volume loss of the ZrC nanoceramic coating is 0.53 mm3, which is only 46% of the 316 stainless steel (1.14 mm3) after cavitation test, and erosion damage of the ZrC nanoceramic coating is significantly decreased as compared to the uncoated 316 stainless steel. The electrochemical test results also indicate that the ZrC nanoceramic coating shows higher corrosion resistance than the 316 stainless steel under cavitation erosion condition. Thus, the ZrC nanoceramic coating can be adopted to enhance the cavitation erosion resistance of the 316 stainless steel.


2017 ◽  
Vol 69 (4) ◽  
pp. 536-544 ◽  
Author(s):  
Kewen Peng ◽  
Can Kang ◽  
Gensheng Li ◽  
Kyuhei Matsuda ◽  
Hitoshi Soyama

Sign in / Sign up

Export Citation Format

Share Document