Performance characteristics of journal bearings (porous type): A coupled solution using Hartmann number and roughness parameter

Author(s):  
GK Kalavathi ◽  
FA Najar ◽  
MG Vasundhara

The influence of magnetic field and roughness factor on long journal (porous) bearing with heterogeneous slip/no-slip surface has been described in this paper. Assumptions of hydrodynamic lubrication theory and Navier slip relation were employed during the investigation, and the generalized Reynolds equation for the oil film pressure was obtained using appropriate boundary conditions and the expressions for pressure distribution and load-carrying capacity as a function of Hartmann number, permeability parameter, roughness parameter, and slip parameter were derived in integral forms. Integrals involved are evaluated by using Simpsons 1/3rd rule and Gauss quadrature 16-point formula in MATLAB code. Christensen stochastic process is adopted to study the roughness behavior. In the present analysis, it has been revealed that there is a noticeable escalation in the load-carrying capacity with the embodiment of magnetic field effect, which enables the journal (rotating part) to levitate inside the domain of bearing (stationary part) that indeed supports the lubricant performance.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ramesh B. Kudenatti ◽  
Shalini M. Patil ◽  
P. A. Dinesh ◽  
C. V. Vinay

This paper theoretically examines the combined effects of surface roughness and magnetic field between two rectangular parallel plates of which the upper plate has roughness structure and the lower plate has porous material in the presence of transverse magnetic field. The lubricating fluid in the film region is assumed to be Newtonian fluid (linearly viscous and incompressible fluid). This model consists of mathematical formulation of the problem with appropriate boundary conditions and solution numerically by finite difference based multigrid method. The generalized average modified Reynolds equation is derived for longitudinal roughness using Christensen’s stochastic theory which assumes that the height of the roughness asperity is of the same order as the mean separation between the plates. We obtain the bearing characteristics such as pressure distribution and load carrying capacity for various values of roughness, Hartmann number, and permeability parameters. It is observed that the pressure distribution and load carrying capacity were found to be more pronounced for increasing values of roughness parameter and Hartmann number; whereas these are found to be decreasing for increasing permeability compared to their corresponding classical cases. The physical reasons for these characters are discussed in detail.


Author(s):  
Yanxiang Han ◽  
Qingen Meng ◽  
Gregory de Boer

A two-scale homogenization method for modelling the hydrodynamic lubrication of mechanical seals with isotropic roughness was developed and presented the influence of surface topography coupled into the lubricating domain. A linearization approach was derived to link the effects of surface topography across disparate scales. Solutions were calculated in a polar coordinate system derived based on the Elrod cavitation algorithm and were determined using homogenization of periodic simulations describing the lubrication of a series of surface topographical features. Solutions obtained for the hydrodynamic lubrication regime showed that the two-scale homogenization approach agreed well with lubrication theory in the case without topography. Varying topography amplitude demonstrated that the presence of surface topography improved tribological performance for a mechanical seal in terms of increasing load-carrying capacity and reducing friction coefficient in the radial direction. A Stribeck curve analysis was conducted, which indicated that including surface topography led to an increase in load-carrying capacity and a reduction in friction. A study of macro-scale surface waviness showed that the micro-scale variations observed were smaller in magnitude but cannot be obtained without the two-scale method and cause significant changes in the tribological performance.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Venkata K. Jasti ◽  
Martin C. Marinack ◽  
Deepak Patil ◽  
C. Fred Higgs

This work demonstrates that granular flows (i.e., macroscale, noncohesive spheres) entrained into an eccentrically converging gap can indeed actually exhibit lubrication behavior as prior models postulated. The physics of hydrodynamic lubrication is quite well understood and liquid lubricants perform well for conventional applications. Unfortunately, in certain cases such as high-speed and high-temperature environments, liquid lubricants break down making it impossible to establish a stable liquid film. Therefore, it has been previously proposed that granular media in sliding convergent interfaces can generate load carrying capacity, and thus, granular flow lubrication. It is a possible alternative lubrication mechanism that researchers have been exploring for extreme environments, or wheel-regolith traction, or for elucidating the spreadability of additive manufacturing materials. While the load carrying capacity of granular flows has been previously demonstrated, this work attempts to more directly uncover the hydrodynamic-like granular flow behavior in an experimental journal bearing configuration. An enlarged granular lubricated journal bearing (GLJB) setup has been developed and demonstrated. The setup was made transparent in order to visualize and video capture the granular collision activity at high resolution. In addition, a computational image processing program has been developed to process the resulting images and to noninvasively track the “lift” generated by granular flow during the journal bearing operation. The results of the lift caused by granular flow as a function of journal rotation rate are presented as well.


1983 ◽  
Vol 105 (1) ◽  
pp. 48-63 ◽  
Author(s):  
C. Bagci ◽  
A. P. Singh

The effect of the film shape on the load carrying capacity of a hydrodynamically lubricated bearing has not been considered an important factor in the past. Flat-faced tapered bearing and the Raileigh’s step bearing of constant film thickness have been the primary forms of film shapes for slider bearing studies and design data developments. This article, by the computer aided numerical solution of the Reynolds equation for two dimensional incompressible lubricant flow, investigates hydrodynamically lubricated slider bearings having different film shapes and studies the effect of the film shape on the performance characteristics of finite bearings; and it shows that optimized bearing with film shapes having descending slope toward the trailing edge of the bearing has considerably higher load carrying capacity than the optimized flat-faced tapered bearing of the same properties. For example the truncated cycloidal film shape yields 26.3 percent higher load carrying capacity for Lz/Lx = 1 size ratio, and 44 percent higher for Lz/Lx = 1/2. The article then presents charts for the optimum designs of finite slider bearings having tapered, exponential, catenoidal, polynomial, and truncated-cycloidal film shapes, and illustrates their use in numerical bearing design examples. These charts also furnish information on flow rate, side leakage, temperature rise, coefficient of friction, and friction power loss in optimum bearings. Appended to the article are analytical solutions for infinitely wide bearings with optimum bearing characteristics. The computer aided numerical solution of the Reynolds equation in most general form is presented by which finite or infinitely wide hydrodynamically or hydrostatically lubricated bearings, externally pressurized or not, can be studied. A digital computer program is made available.


1986 ◽  
Vol 108 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Y. Mitsuya

Stokes roughness effects on hydrodynamic lubrication are studied in the slip flow regime. Slip flow boundary conditions for Navier-Stokes equations are derived, assuming that the fluid on a surface slips due to the molecular mean free path along the surface, even if the surface is rough. The perturbation method for Navier-Stokes equations, which was derived in Part I of this report, is then applied. Slip flow effects on load carrying capacity and frictional force are numerically clarified for both Stokes and Reynolds roughnesses. In the slip flow regime, second-order quantities induced by Stokes effects, such as flow rate, load carrying capacity, and frictional force are in proportion to the wavenumber squared. This phenomenon relative to the quantities being proportional is also the same as that in the continuum flow regime. As a result of velocity slippage, the load carrying capacity in Stokes roughness is found to decrease more than in Reynolds roughness for incompressible films, while the relationship is reversed for compressible films having a high compressibility number. The simulation of random roughness, which is generated by numerical means, clarifies one important result: the average slip flow effects associated with random Stokes roughness become similar to the slip flow effects in deterministic sinusoidal Stokes roughness, whose wavelength and height are statistically equivalent to those of random roughness. Although attention should be given to the fact that Stokes effects on random roughness demonstrate considerable scattering with the continuum flow, such scattering diminishes with the slip flow.


1970 ◽  
Vol 92 (1) ◽  
pp. 129-134 ◽  
Author(s):  
H. Korrenn

Thrust load transmission at the contact areas of roller ends and flanges occurs under conditions of pure sliding. Recent theoretical and experimental investigations showed that with adequately designed roller ends and flanges and with a satisfactory lubricant high thrust loads can be accommodated over a wide speed range with fully hydrodynamic lubrication. The conventional methods used for the determination of the safe thrust load should be revised and supplemented. Oil viscosity should be introduced as an important parameter. Contrary to present opinion the hydrodynamic load-carrying capacity at the flange increases with increasing speed. This new knowledge broadens the application range of radial cylindrical roller bearings.


2019 ◽  
Vol 895 ◽  
pp. 152-157 ◽  
Author(s):  
B. Narasimha Rao ◽  
A. Seshadri Sekhar

Magneto Rheological (MR) fluids are a class of smart materials where the shear stress is not directly proportional to rate of shear. The viscosity of fluid changes as magnetic field changes and hence this phenomenon is very useful in bearing-rotor system for attenuating the vibrations. In the present study the application of MR fluid as lubricant instead of Newtonian fluid in the journal bearing is explored through steady state, dynamic characteristics and stability. MR fluid film has been modeled as per Bingham rheological model. FEM with three node triangular elements has been used to solve the Reynolds equation both for the Newtonian fluid film and MR fluid film. The results show the load carrying capacity in the case of MR fluid journal bearing is higher than that of using the Newtonian fluid. The load carrying capacity increases with the increasing magnetic field for all eccentricity ratios. The results also show better stability of the bearing using MR fluid at higher eccentricity ratios. The unbalance response of the rotor mounted on the journal bearing using MR fluid is also estimated to be lower than that of with the Newtonian fluid.


Author(s):  
Fredrik Sahlin ◽  
Sergei B. Glavatskih ◽  
Torbjo¨rn Almqvist ◽  
Roland Larsson

Results of a numerical study of the influence of micro-patterned surfaces in hydrodynamic lubrication of two parallel walls are reported. Two types of parameterized grooves with the same order of depth as the film thickness are used on one stationary wall. The other wall is smooth and is sliding with a specified tangential velocity. Isothermal incompressible two dimensional full film fluid flow mechanics is solved using a Computational Fluid Dynamics method. It is shown that, by introducing a micro-pattern on one of two parallel walls, a net pressure rise in the fluid domain is achieved. This produces a load carrying capacity on the walls which is mainly contributed by fluid inertia. The load carrying capacity increases with Reynolds number. The load carrying capacity is reported to increase with groove width and depth. However, at a certain depth a vortex appears in the groove and near this value the maximum load carrying capacity is achieved. It is shown that the friction force decreases with deeper and wider grooves. Among all geometries studied, optimum geometry shapes in terms of hydrodynamic performance are reported.


Author(s):  
R. J. Boness

Theoretical results of the load-carrying capacity of lightly loaded finite cylinders indicate that the effect of side leakage can be secondary to upstream boundary condition considerations. Neglecting side leakage the calculations are extended to cover the experimental results of Crook into the régime where the fluid properties are pressure dependent. The results support the adoption of the new velocity and velocity gradient boundary conditions suggested by Lauder.


1986 ◽  
Vol 108 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Y. Mitsuya ◽  
S. Fukui

A perturbation method for the Navier-Stokes equations is presented for analyzing Stokes roughness effects on hydrodynamic lubrication in both incompressible and compressible films. The solution is obtained from direct numerical calculation by using an actual rough spacing, without applying the currently accepted assumption that the roughness height should be small. The roughness wavelength and height influences on flow rate, load carrying capacity and frictional force are clarified. Secondary quantities induced by Stokes effects are found to be proportional to wavenumber n squared for sufficiently large n values, so that the amount of the Stokes effect can be determined by the spacing to wavelength squared ratio. A significant difference between incompressible and compressible films is that Stokes roughness increases the flow resistance of and then enhances the load carrying capacity of incompressible films, while it inversely affects compressible films. The compressibility with respect to secondary pressure induced by the Stokes effects can be neglected for any compressibility number, no matter how large, as long as the local compressibility number, defined by the wavelength, is small.


Sign in / Sign up

Export Citation Format

Share Document