Safety-state evaluation model based on structural entropy weight–matter element extension method for ancient timber architecture

2019 ◽  
Vol 23 (6) ◽  
pp. 1087-1097
Author(s):  
Junhong Huan ◽  
Donghui Ma ◽  
Wei Wang ◽  
Xiaodong Guo ◽  
Ziyi Wang ◽  
...  

This article investigates various factors that may influence the safety state of ancient timber architecture, to improve the accuracy of safety-state evaluation results for ancient timber architecture. During the process, a safety-state evaluation system for ancient timber architecture is developed. This safety-state evaluation system includes five parts: foundation, plinth, timber frame, enclosing wall, and roof. Based on the system, a safety-assessment model for ancient timber architecture based on structural entropy weight–matter element extension model is also introduced. In this model, the structural entropy weight method is applied to calculating the weight of each index and takes the influence of subjective and objective weights into consideration comprehensively. This model has the following three detailed steps. First, correlation function and correlation degree of extension set are used to quantify the relationship between the evaluation indexes of the components, joints, and evaluation interval of each safety state. Second, the safety states of units are determined according to the distribution of safety state of the components. Third, the safety degree of the entire structure is determined via the minimum safety state of units. This study also uses the Niaoqiangsanchu in Forbidden City as a study case and found that the evaluation results are consistent with the results of the practical damage survey and the actual situation of the architecture. The model thus minimizes the uncertainty of qualitative and quantitative factors in the process of evaluating the safety degree of ancient timber architecture, to finally obtain the objective evaluation results.

2020 ◽  
Vol 165 ◽  
pp. 06050
Author(s):  
Weixia Wang ◽  
He Jun

In order to improve the rationality and fairness of Teachers’ “Double-qualified” Ability, the article establishes an evaluation model based on 14 evaluation indexes of teachers’ “double-qualified” ability. it adopts Delphi - entropy weight method to weight the evaluation index, and then combines TOPSIS method to evaluate the evaluation object. In the evaluation of TOPSIS method, the traditional TOPSIS weight method was improved, and the entropy weight-delphi method was used to determine the index weight, which was a combination of subjective and objective, making the evaluation system more objective, scientific and reasonable.It not only avoids the subjectivity of decision makers and limitations, but also eliminates the phenomenon of indexes in common impact assessment results and finally applies it to a university teacher “Double division and triple energy” evaluation system, to provide theoretical basis and feasibility analysis for the “double type” teachers team construction. Chinese library classification number: O224 Document identification code: A


Author(s):  
Shunuan Liu ◽  
Ning Wang ◽  
Kaifu Zhang ◽  
Bin Luo

Hole surface quality in drilling carbon fiber-reinforced plastics and titanium alloy (CFRP-Ti) stacks is a key factor affecting high-quality assembly and reliable usage of the structure so it need be reasonably evaluated. However, there is no standardized evaluation system of hole surface quality in drilling CFRP-Ti stacks. The existing evaluation indexes cannot meet the evaluation requirements on the surface quality of the hole. This paper proposes a subjective-objective evaluation method to evaluate the surface quality of the hole in drilling CFRP-Ti stacks. Firstly, the evaluation factors are determined by experiments, including CFRP delamination, CFRP hole entrance tears, surface roughness of CFRP and Ti, and the evaluation system is established according to defect characteristics and industry standards. Secondly, the subjective evaluation model is established based on the improved analytic hierarchy process, the objective evaluation model is established based on the entropy weight method and the subjective and objective combination weight calculation method is obtained based on the principle of minimum discriminant information. Finally, the surface quality of the hole is evaluated by subjective, objective, subjective-objective evaluation methods respectively. The result shows that subjective-objective evaluation method is more reasonable and effective.


2019 ◽  
Vol 11 (14) ◽  
pp. 3793 ◽  
Author(s):  
Yuangang Li ◽  
Maohua Sun ◽  
Guanghui Yuan ◽  
Qi Zhou ◽  
Jinyue Liu

In order to evaluate the atmospheric environment sustainability in the provinces of Northeast China, this paper has constructed a comprehensive evaluation model based on the rough set and entropy weight methods. This paper first constructs a Pressure-State-Response (PSR) model with a pressure layer, state layer and response layer, as well as an atmospheric environment evaluation system consisting of 17 indicators. Then, this paper obtains the weight of different indicators by using the rough set method and conducts equal-width discrete analysis and clustering analysis by using SPSS software. This paper has found that different discrete methods will end up with different reduction sets and multiple indicators sharing the same weight. Therefore, this paper has further introduced the entropy weight method based on the weight solution determined by rough sets and solved the attribute reduction sets of different layers by using the Rosetta software. Finally, this paper has further proved the rationality of this evaluation model for atmospheric environment sustainability by comparing the results with those of the entropy weight method alone and those of the rough set method alone. The results show that the sustainability level of the atmospheric environment in Northeast China provinces has first improved, and then worsened, with the atmospheric environment sustainability level reaching the highest level of 0.9275 in 2014, while dropping to the lowest level of 0.6027 in 2017. Therefore, future efforts should focus on reducing the pressure layer and expanding the response layer. Based on analysis of the above evaluation results, this paper has further offered recommendations and solutions for the improvement of atmospheric environment sustainability in the three provinces of Northeast China.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2273
Author(s):  
Zixue Guo ◽  
Yu Tian ◽  
Xinmei Guo ◽  
Zefang He

To solve the problem of fuzziness and randomness in regional logistics decarbonization evaluation and accurately assess regional logistics decarbonization development, an evaluation model of regional logistics decarbonization development is established. First, the evaluation index of regional logistics decarbonization development is constructed from three dimensions: low-carbon logistics environment support, low-carbon logistics strength and low-carbon logistics potential. Second, the evaluation indexes are used as cloud model variables, and the cloud numerical characteristic values and cloud affiliation degrees are determined according to the cloud model theory. The entropy weight method is used to determine the index weights, and the comprehensive determination degree of the research object affiliated to the logistics decarbonization level is calculated comprehensively. Finally, Beijing-Tianjin-Hebei region is used as an example for empirical evidence, analyzing the development logistics decarbonization and its and temporal variability in Beijing, Tianjin and Hebei provinces and cities. The results of the study show that the development logistics decarbonization in Beijing, Tianjin and Hebei Province has been improved to different degrees during 2013–2019, but the development is uneven. Developing to 2019, the three provinces and cities of Beijing, Tianjin and Hebei still have significant differences in terms of economic environment, logistics industry scale, logistics industry inputs and outputs, and technical support.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Junhong Huan ◽  
Donghui Ma ◽  
Wei Wang ◽  
Ziyi Wang

To improve accuracy of safety state evaluation results for ancient timber buildings and to know the real state of the building, a safety grade evaluation model of ancient timber buildings is established based on attribute mathematic theory. From the perspective of macro, micro, qualitative, and quantitative, 22 factors may adversely affect the safety state of ancient timber building are considered in this model. First, evaluation system is established, and evaluation indexes are selected based on former study, seismic damage data, and Chinese current code about ancient timber buildings. In the evaluation system, whole building is divided into four parts, which are wood frame, enclosing wall, foundation, and plinth. Different parts contain different components. Every component has its own evaluation indexes. Second, based on the AHP and entropy method, the comprehensive empowering method is used to determine the weights of the indexes. Third, the attribute recognition model is established to identify the safety grade of components or units. Fourth, based on the evaluation results of components, safety grade of units is identified. Then, safety degree of the entire building is determined by the minimum safety grade of units. At last, the model is applied to the “Liben hall” in village Siping, Zhejiang province, China, and the assessment results are consistent with the results of damage identification.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1340 ◽  
Author(s):  
Yaxue Zuo ◽  
Zhenya Wang

Product evaluation is very important for product improvement and development, and subjective product evaluation determines customer’s evaluation of products to some extent, so the purpose of this study is to establish a reasonable subjective product evaluation system. In this study, we comprehensively determine the evaluation indexes based on Kansei engineering (KE), establish an overall product evaluation system by using analytic hierarchy process (AHP), and establish the subjective product evaluation system by classifying the evaluation indexes in the overall product evaluation system into “objective evaluation index” and “subjective evaluation index”, removing the objective evaluation indexes, and retaining the subjective evaluation indexes. Additionally, we select some modern chairs as experimental samples to verify the reliability and validity of this subjective product evaluation system by means of questionnaires. The experimental results show that, in this subjective product evaluation system, the subjective evaluation of the product is positively correlated with the “favorite” level of the product in comprehensive evaluation, and negatively correlated with the “least favorite” level of the product in comprehensive evaluation, indicating that this subjective product evaluation system realizes a symmetry between subjective product evaluation and comprehensive product evaluation. Therefore, it can be concluded that this subjective product evaluation system based on KE and AHP proposed in this study has reliability and validity, and can be used for product evaluation to judge the popularity of products and enhance the competitiveness of products.


2010 ◽  
Vol 163-167 ◽  
pp. 3110-3113
Author(s):  
Zheng Xi Gong ◽  
Jian Guo Yang

Reliability analysis is the premise for reinforcement and maintenance of an existing highway tunnel. In order to understand the structure reliability of an existing highway tunnel, a fuzzy mat-ter-element evaluation method was put forward based on entropy weight according to the fuzzy matter-element analysis method. Firstly, levels of inspection results were regarded as objects of matter-element and composite fuzzy matter-elements were constructed considering such factors and their evaluation indexes as cracks of concrete lining, lining thickness, concrete strength, cavities behind the lining and water leakage conditions. Secondly, reliability evaluation results of the existing tunnel structure were obtained by calculating the relevancy. Lastly, fuzzy matter-element evaluation model was effectively used to evaluate reliability of one highway tunnel structure.


Sign in / Sign up

Export Citation Format

Share Document