Axial compressive behaviour of concrete-filled steel tubular columns with interfacial damage

2019 ◽  
Vol 23 (6) ◽  
pp. 1224-1237 ◽  
Author(s):  
Xiushu Qu ◽  
Fei Huang ◽  
Guojun Sun ◽  
Qi Liu ◽  
Hui Wang

In a previous study, 17 rectangular concrete-filled steel tubular columns were tested using a push-out test method to examine the interfacial bond behaviour. In this study, these specimens were subjected to axial compressive tests to study the effects of interfacial damage on the ultimate axial compressive capacity. The variations in both the load–axial displacement curves and load–strain curves were recorded and then compared to study the influences of both the steel tube fabrication method and the D/ B ratio on the axial load–carrying capacity. The axial compressive behaviour of rectangular concrete-filled steel tubular columns with no interfacial damage was then studied using a numerical analysis method. The contact stress distribution along the length and width of the face and at the height of the interface was obtained and discussed. In addition, the ultimate axial compressive capacity of rectangular concrete-filled steel tubular columns with no interfacial damage was calculated using the formulas from three international codes. The influence of interfacial damage on the axial compressive bearing capacity of a rectangular concrete-filled steel tubular column was discussed through a comparison of the results of the numerical simulation, formula calculation and experiments. The influence of the interfacial gaps caused by the push-out tests on the axial bearing capacity of the concrete-filled steel tubular columns can be ignored, because the core concrete was not destroyed and the outside steel tube can provide a sufficient constraint force on the concrete when the two materials yielded. Finally, the influences of the gap type and size on the bearing capacity were discussed.

2010 ◽  
Vol 163-167 ◽  
pp. 11-15
Author(s):  
Wen Qi Hou ◽  
Mei Xin Ye ◽  
Ye Zhi Zhang

Abstract. In the presented paper, reverse push-out test method was put forward and applied in the ultimate bearing capacity experiments of studs with concrete slab in tension. Ultimate bearing capacity experiments were carried out on 22 reverse push-out specimens composed of C50 or C40 concrete, 14MnNbq steel girder and Φ22studs. Results showed that ultimate bearing capacity of studs, pu, in tensile concrete slab is controlled by concrete failur, concrete strength, studs arragement and reinforcement ratio are the main influence factors of pu. Compared with that in compressive concrete, pu of Φ22 studs in tensile concrete is reduced about 30% averagely. According to the test results, a fitted load-slip relationship curve and a regression formula of pu for studs in tensile concrete were put forward, calculated results were in good agreement with the test results.


2010 ◽  
Vol 163-167 ◽  
pp. 749-753
Author(s):  
Yao Ji ◽  
Xin Tang Wang ◽  
Ming Zhou ◽  
Wan Zhen Wang

In order to look into the causes of fire response and post-fire bearing capacity of the steel tubular columns protected with different materials, the fire test was conducted for a set of circular steel tubes protected with different materials such as gypsum fireproof panel, bamboo plywood and the ordinary lumber core plywood, and the steel tube without any protective material. The fire response temperature of surface of steel tubes is measured and the axial compressive bearing capacity of the specimens after fire are tested and analyzed. The test results show that gypsum fireproof panel has the best fire protection characteristics, the ordinary lumber core plywood and bamboo plywood can also retard rising of the surface temperature of the steel tubes during the initial 35min although they are combustible materials. It is found that the post-fire bearing capacity of the steel tubes protected with different materials varies evidently, and the maximum value of response temperature has the greatest effect.


2014 ◽  
Vol 578-579 ◽  
pp. 995-999 ◽  
Author(s):  
Sheng Shan Pan ◽  
Xue Feng Zhao ◽  
Zhe Zhang

The separation between the filled-concrete and the steel tube would reduce tremendously the bearing capacity of the concrete-filled steel tubular (CFST) arch bridge. However, there is no efficient method to monitor and detect the separation so far, which is a great engineering problem we have to solve. Therefore, this paper firstly proposes a vibration test method aiming at the local modal of the steel tube. Distributed accelerometer array deployed along the tube is used to acquire the vibration signal induced by quantitative excitation via telecontrol. Changes in frequency and amplitude of the steel tube are selected as parameters for the separation detection based on the theory of surface wave transmission. This method can satisfy the demand of the real-time monitoring of interface separation of the CFST arch bridge.


2019 ◽  
Vol 23 (3) ◽  
pp. 565-577 ◽  
Author(s):  
Zhao Li ◽  
Jingwei Gao ◽  
Jindong Xu ◽  
Guofeng Du

Compared with the traditional reinforced concrete columns, the concrete-filled steel tubular columns with a better restraint effect of steel tube on core concrete showed higher bearing capacity and ductility under static loads. However, except static loads, concrete-filled steel tubular columns are commonly exposed to the extreme dynamic loads including earthquake, explosion, and impact. The study on dynamic behavior of concrete-filled steel tubular columns is extremely significant to ensure their safety against such dynamic loads. In this article, a polyvinylidene fluoride piezoelectric smart sensor was proposed to monitor the axial impact bearing capacity of specimen based on stress monitoring under impact loads. The concrete-filled steel tubular columns with smart sensor embedded were tested, which considered the effects of both hammer impact heights and steel tube thickness on the axial impact bearing capacity. The impact bearing capacity calculated based on the monitoring results of polyvinylidene fluoride sensor is in good agreement with the measured values, which verifies the feasibility of this method. Moreover, it is found that the failure mode of concrete-filled steel tubular short columns is the local tearing failure or local buckling. In addition, non-linear finite element models were also established to study the effect of different parameters on the axial bearing capacity. The simplified formula for calculating the axial impact bearing capacity of concrete-filled steel tubular short columns was proposed based on the large amount verified model. Through the comparison between the calculation value and the test value, the formula is found to well reflect the axial impact bearing capacity of concrete-filled steel tubular short columns, which provides a reference for similar research.


2012 ◽  
Vol 446-449 ◽  
pp. 175-179 ◽  
Author(s):  
Jun Huang ◽  
Shao Bin Dai ◽  
Zhong Peng

Through orthogonal test, the main influencing factors to the ultimate bearing capacity, ductility and energy consuming ability of L-shaped concrete-filled rectangular composite steel tubular columns are studied. Research results show as follows: the most important factor in deciding the ultimate bearing capacity is the steel tube wall thickness; the most important factor in deciding the ductility factor is the steel tube wall thickness; the most important factor in deciding the equivalent viscous damping coefficient is the strength classes of concrete. At the same time the best level combination of these factors are got.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1404
Author(s):  
Jian Wang ◽  
Junwu Xia ◽  
Hongfei Chang ◽  
Youmin Han ◽  
Linli Yu ◽  
...  

In the present paper, the monotonic axial compression test of gangue aggregate concrete filled Fiber reinforced polymer (FRP) and thin-walled steel double tubular columns (DTCC) was carried out, and the gangue aggregate concrete filled FRP tubular columns (CFFT) were designed as a comparison. The main experimental factors were the confinement level of the FRP jacket, the relative diameter ratio (the ratio of the outer diameter of the steel tube to the inner diameter of the FRP jacket), and the different strengths of gangue aggregate concrete. The test results show that the bearing capacity and ductility of gangue aggregate concrete in CFFT were significantly improved. As the local buckling of thin-walled steel tube was effectively inhibited, the load bearing capacity of DTCC was further improved compared with CFFT, but the change of dilation behavior and ductility was insignificant. By analyzing the bi-directional stress state of the steel tube, the confinement level of the external FRP jacket was the most sensitive factor affecting the hoop stress of the steel tube, and the axial stress was obviously weakened under the bi-directional stress state. In addition, with the increase of steel tube diameter, the confinement effect of steel tube in DTCC became more obvious.


2012 ◽  
Vol 502 ◽  
pp. 193-197 ◽  
Author(s):  
Hai Jun Wang ◽  
Hua Bei Zhu ◽  
Hua Wei

Steel tube and filled concrete of square CFT (concrete filled steel tubular structures) columns under eccentric load are in complicated stress condition, the influence of every kind of factors on mechanics performance is difficult to ascertain accurately. On the other hand, neural network is good at obtaining the relationship between input and output variables by self-studying, self-organizing, self-adapting and nonlinear mapping. Therefore, it is suitable that use neural network to calculating the bearing capacity of square CFT columns. In this paper a four-layer back-propagation model of network is trained according to experimental data of square CFT columns under eccentric load, a neural network model for eccentrically loaded square CFT columns is set up. The model is verified by six groups of experimental data, the results show the predicted values are in good agreement with test values, precision in calculation is good enough to be used as an auxiliary method for structure design.


2008 ◽  
Vol 400-402 ◽  
pp. 513-518 ◽  
Author(s):  
Yong Chang Guo ◽  
Pei Yan Huang ◽  
Yang Yang ◽  
Li Juan Li

The improvement of the load carrying capacity of concrete columns under a triaxial compressive stress results from the strain restriction. Under a triaxial stress state, the capacity of the deformation of concrete is greatly decreased with the increase of the side compression. Therefore, confining the deformation in the lateral orientation is an effective way to improve the strength and ductility of concrete columns. This paper carried out an experimental investigation on axially loaded normal strength concrete columns confined by 10 different types of materials, including steel tube, glass fiber confined steel tube (GFRP), PVC tube, carbon fiber confined PVC tube (CFRP), glass fiber confined PVC tube (GFRP), CFRP, GFRP, polyethylene (PE), PE hybrid CFRP and PE hybrid GFRP. The deformation, macroscopical deformation characters, failure mechanism and failure modes are studied in this paper. The ultimate bearing capacity of these 10 types of confined concrete columns and the influences of the confining materials on the ultimate bearing capacity are obtained. The advantages and disadvantages of these 10 types of confining methods are compared.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yiyan Lu ◽  
Tao Zhu ◽  
Shan Li ◽  
Weijie Li ◽  
Na Li

This paper investigates the axial behavior of slender reinforced concrete (RC) columns strengthened with concrete filled steel tube (CFST) jacketing technique. It is realized by pouring self-compacting concrete (SCC) into the gap between inner original slender RC columns and outer steel tubes. Nine specimens were prepared and tested to failure under axial compression: a control specimen without strengthening and eight specimens with heights ranging between 1240 and 2140 mm strengthened with CFST jacketing. Experimental variables included four different length-to-diameter (L/D) ratios, three different diameter-to-thickness (D/t) ratios, and three different SCC strengths. The experimental results showed that the outer steel tube provided confinement to the SCC and original slender RC columns and thus effectively improved the behavior of slender RC columns. The failure mode of slender RC columns was changed from brittle failure (concrete peel-off) into ductile failure (global bending) after strengthening. And, the load-bearing capacity, material utilization, and ductility of slender RC columns were significantly enhanced. The strengthening effect of CFST jacketing decreased with the increase of L/D ratio and D/t ratio but showed little variation with higher SCC strength. An existing expression of load-bearing capacity for traditional CFST columns was extended to propose a formula for the load-bearing capacity of CFST jacketed columns, and the predictions showed good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document