An experimental study of the injection strategies on engine performance of the butanol/biodiesel dual-fuel Intelligent Charge Compression Ignition mode

2020 ◽  
pp. 146808742096399
Author(s):  
Wenbin Zhao ◽  
Yaoyuan Zhang ◽  
Guan Huang ◽  
Zilong Li ◽  
Yong Qian ◽  
...  

Intelligent Charge Compression Ignition (ICCI) combustion mode is a novel dual-fuel combustion strategy that has been proposed recently. In ICCI combustion mode, two fuels with different reactivity are directly injected during the intake stroke and compression stroke, respectively, to achieve flexible reactivity gradient and equivalence ratio stratification. In this study, experiments were conducted on a single-cylinder diesel engine to investigate the effects of butanol direct injection strategies on the engine running with ICCI combustion mode at a constant speed of 1500 r/min and medium load. Results showed that ICCI combustion mode was composed of premixed heat release and diffusion heat release. In compare, the percentage of premixed heat release was higher than the diffusion heat release. With fixed biodiesel direct injection timing (SOI2), retarding butanol single injection timing (SOI1) would delay combustion phasing while not distinctively affect ignition timing. SOI1 showed significant effect on the thermal efficiency and engine emissions. Indicated thermal efficiency (ITE) decreased at first and then slightly increased with retarding of SOI1, while the nitrogen oxides (NOx) emissions were always at low levels. As the butanol second direct injection timing (SOI1-2) retard and the corresponding energy ratio increase, more butanol entered into the crevice/squish regions, leading to the increase of unburned hydrocarbon (HC) and carbon monoxide (CO) emissions. EGR strategy helps to significantly reduce NOx emissions without affecting ITE although penalized HC and CO emissions are resulted in. The optimum butanol direct injection strategies were butanol single direct injection, especially in the early SOI1, in which the thermal efficiency was higher and emissions were at very low levels (NOx  < 0.4 g/kW h).

2013 ◽  
Vol 388 ◽  
pp. 217-222
Author(s):  
Mohamed Mustafa Ali ◽  
Sabir Mohamed Salih

Compression Ignition Diesel Engine use Diesel as conventional fuel. This has proven to be the most economical source of prime mover in medium and heavy duty loads for both stationary and mobile applications. Performance enhancements have been implemented to optimize fuel consumption and increase thermal efficiency as well as lowering exhaust emissions on these engines. Recently dual fueling of Diesel engines has been found one of the means to achieve these goals. Different types of fuels are tried to displace some of the diesel fuel consumption. This study is made to identify the most favorable conditions for dual fuel mode of operation using Diesel as main fuel and Gasoline as a combustion improver. A single cylinder naturally aspirated air cooled 0.4 liter direct injection diesel engine is used. Diesel is injected by the normal fuel injection system, while Gasoline is carbureted with air using a simple single jet carburetor mounted at the air intake. The engine has been operated at constant speed of 3000 rpm and the load was varied. Different Gasoline to air mixture strengths investigated, and diesel injection timing is also varied. The optimum setting of the engine has been defined which increased the thermal efficiency, reduced the NOx % and HC%.


Author(s):  
Bibhuti B. Sahoo ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Synthesis gas (Syngas), a mixture of hydrogen and carbon monoxide, can be manufactured from natural gas, coal, petroleum, biomass, and even from organic wastes. It can substitute fossil diesel as an alternative gaseous fuel in compression ignition engines under dual fuel operation route. Experiments were conducted in a single cylinder, constant speed and direct injection diesel engine fuelled with syngas-diesel in dual fuel mode. The engine is designed to develop a power output of 5.2 kW at its rated speed of 1500 rpm under variable loads with inducted syngas fuel having H2 to CO ratio of 1:1 by volume. Diesel fuel as a pilot was injected into the engine in the conventional manner. The diesel engine was run at varying loads of 20, 40, 60, 80 and 100%. The performance of dual fuel engine is assessed by parameters such as thermal efficiency, exhaust gas temperature, diesel replacement rate, gas flow rate, peak cylinder pressure, exhaust O2 and emissions like NOx, CO and HC. Dual fuel operation showed a decrease in brake thermal efficiency from 16.1% to a maximum of 20.92% at 80% load. The maximum diesel substitution by syngas was found 58.77% at minimum exhaust O2 availability condition of 80% engine load. The NOx level was reduced from 144 ppm to 103 ppm for syngas-diesel mode at the best efficiency point. Due to poor combustion efficiency of dual fuel operation, there were increases in CO and HC emissions throughout the range of engine test loads. The decrease in peak pressure causes the exhaust gas temperature to rise at all loads of dual fuel operation. The present investigation provides some useful indications of using syngas fuel in a diesel engine under dual fuel operation.


2019 ◽  
Vol 22 (1) ◽  
pp. 152-164 ◽  
Author(s):  
Ripudaman Singh ◽  
Taehoon Han ◽  
Mohammad Fatouraie ◽  
Andrew Mansfield ◽  
Margaret Wooldridge ◽  
...  

The effects of a broad range of fuel injection strategies on thermal efficiency and engine-out emissions (CO, total hydrocarbons, NOx and particulate number) were studied for gasoline and ethanol fuel blends. A state-of-the-art production multi-cylinder turbocharged gasoline direct injection engine equipped with piezoelectric injectors was used to study fuels and fueling strategies not previously considered in the literature. A large parametric space was considered including up to four fuel injection events with variable injection timing and variable fuel mass in each injection event. Fuel blends of E30 (30% by volume ethanol) and E85 (85% by volume ethanol) were compared with baseline E0 (reference grade gasoline). The engine was operated over a range of loads with intake manifold absolute pressure from 800 to 1200 mbar. A combined application of ethanol blends with a multiple injection strategy yielded considerable improvement in engine-out particulate and gaseous emissions while maintaining or slightly improving engine brake thermal efficiency. The weighted injection spread parameter defined in this study, combined with the weighted center of injection timing defined in the previous literature, was found well suited to characterize multiple injection strategies, including the effects of the number of injections, fuel mass in each injection and the dwell time between injections.


Author(s):  
Xiangyu Meng ◽  
Wuqiang Long ◽  
Yihui Zhou ◽  
Mingshu Bi ◽  
Chia-Fon F. Lee

Because of the potential to reduce NOx and PM emissions simultaneously and the utilization of biofuel, diesel/compressed natural gas (CNG) dual-fuel combustion mode with port injection of CNG and direct injection of diesel has been widely studied. While in comparison with conventional diesel combustion mode, the dual-fuel combustion mode generally leads lower thermal efficiency, especially at low and medium load, and higher carbon monoxide (CO) and total hydrocarbons (THC) emissions. In this work, n-butanol was blended with diesel as the pilot fuel to explore the possibility to improve the performance and emissions of dual-fuel combustion mode with CNG. Various pilot fuels of B0 (pure diesel), B10 (90% diesel/10% n-butanol by volume basis), B20 (80% diesel/20% n-butanol) and B30 (70% diesel/30% n-butanol) were compared at the CNG substitution rate of 70% by energy basis under the engine speeds of 1400 and 1800 rpm. The experiments were carried out by sweeping a wide range of pilot fuel start of injection timings based on the same total input energy including pilot fuel and CNG. As n-butanol was added into the pilot fuel, the pilot fuel/CNG/air mixture tends to be more homogeneous. The results showed that for the engine speed of 1400 rpm, pilot fuel with n-butanol addition leads to a slightly lower indicated thermal efficiency (ITE). B30 reveals much lower NOx emission and slightly higher THC emissions. For the engine speed of 1800 rpm, B20 can improve ITE and decrease the NOx and THC emissions simultaneously relative to B0.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 990 ◽  
Author(s):  
Jinze Li ◽  
Longfei Deng ◽  
Jianjun Guo ◽  
Min Zhang ◽  
Zhenyuan Zi ◽  
...  

The direct injection of natural gas (NG), which is an important research direction in the development of NG engines, has the potential to improve thermal efficiency and emissions. When NG engines operate in low-load conditions, combustion efficiency decreases and hydrocarbon (HC) emissions increase due to lean fuel mixtures and slow flame propagation speeds. The effect of two combustion modes (partially premixed compression ignition (PPCI) and high pressure direct injection (HPDI)) on combustion processes was investigated by CFD (Computational Fluid Dynamics), with a focus on different injection strategies. In the PPCI combustion mode, NG was injected early in the compression stroke and premixed with air, and then the pilot diesel was injected to cause ignition near the top dead center. This combustion mode produced a faster heat release rate, but the HC emissions were higher, and the combustion efficiency was lower. In the HPDI combustion mode, the diesel was injected first and ignited, and then the NG was injected into the flame. This combustion mode resulted in higher emissions of NOx and soot, with a diffusion combustion in the cylinder. HC emissions significantly decreased. Compared with PPCI combustion, HPDI had a higher thermal efficiency.


2020 ◽  
Vol 6 ◽  
Author(s):  
Shouvik Dev ◽  
Hongsheng Guo ◽  
Brian Liko

Diesel fueled compression ignition engines are widely used in power generation and freight transport owing to their high fuel conversion efficiency and ability to operate reliably for long periods of time at high loads. However, such engines generate significant amounts of carbon dioxide (CO2), nitrogen oxides (NOx), and particulate matter (PM) emissions. One solution to reduce the CO2 and particulate matter emissions of diesel engines while maintaining their efficiency and reliability is natural gas (NG)-diesel dual-fuel combustion. In addition to methane emissions, the temperatures of the diesel injector tip and exhaust gas can also be concerns for dual-fuel engines at medium and high load operating conditions. In this study, a single cylinder NG-diesel dual-fuel research engine is operated at two high load conditions (75% and 100% load). NG fraction and diesel direct injection (DI) timing are two of the simplest control parameters for optimization of diesel engines converted to dual-fuel engines. In addition to studying the combined impact of these parameters on combustion and emissions performance, another unique aspect of this research is the measurement of the diesel injector tip temperature which can predict potential coking issues in dual-fuel engines. Results show that increasing NG fraction and advancing diesel direct injection timing can increase the injector tip temperature. With increasing NG fraction, while the methane emissions increase, the equivalent CO2 emissions (cumulative greenhouse gas effect of CO2 and CH4) of the engine decrease. Increasing NG fraction also improves the brake thermal efficiency of the engine though NOx emissions increase. By optimizing the combustion phasing through control of the DI timing, brake thermal efficiencies of the order of ∼42% can be achieved. At high loads, advanced diesel DI timings typically correspond to the higher maximum cylinder pressure, maximum pressure rise rate, brake thermal efficiency and NOx emissions, and lower soot, CO, and CO2-equivalent emissions.


2005 ◽  
Vol 128 (2) ◽  
pp. 446-454 ◽  
Author(s):  
Wanhua Su ◽  
Xiaoyu Zhang ◽  
Tiejian Lin ◽  
Yiqiang Pei ◽  
Hua Zhao

A compound diesel homogeneous charge compression ignition (HCCI) combustion system has been developed based on the combined combustion strategies of multiple injection strategy and a mixing enhanced combustion chamber design. In this work, a STAR-CD based, multidimensional modeling is conducted to understand and optimize the multiple injection processes. The parameters explored included injection timing, dwell time, and pulse width. Insight generated from this study provides guidelines on designing the multipulse injection rate pattern for optimization of fuel-air mixing. Various heat release modes created by different injection strategies are investigated by experimental comparison of combustion efficiency, heat loss, and thermal efficiency. It is demonstrated that the process of fuel evaporation and mixing are strongly influenced by pulse injection parameters. Through control of the parameters, the stratification and autoignition of the premixed mixture, and the heat release mode can be controlled. The dispersed mode of heat release created only by the compound diesel HCCI combustion is a flexible mode in combustion control. The thermal efficiency with this mode can reach approximately to as high as that of conventional diesel combustion, while the NOx and smoke emissions can be reduced simultaneously and remarkably.


Author(s):  
Adam B. Dempsey ◽  
Scott Curran ◽  
Robert Wagner ◽  
William Cannella

Gasoline compression ignition (GCI) concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multicylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies have been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection (DI) strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from −91 deg to −324 deg ATDC, which is just after the exhaust valve closes (EVCs) for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 l diesel engine with a variable geometry turbocharger (VGT), high pressure common rail injection system, wide included angle injectors, and variable swirl actuations was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency (BTE) and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).


Sign in / Sign up

Export Citation Format

Share Document