scholarly journals Prevention of atherosclerosis by specific AT1-receptor blockade with candesartan cilexetil

2001 ◽  
Vol 2 (1_suppl) ◽  
pp. S77-S80
Author(s):  
Vasilios Papademetriou ◽  
Philippe Mammillot ◽  
Robert Redman ◽  
Aldo Notargiacomo ◽  
Puneet Narayan ◽  
...  

Several studies indicate that blockade of the renin-angiotensin-aldosterone system (RAAS) can prevent atherosclerosis and vascular events, but the precise mechanisms involved are still unclear. In this study, we investigated the effect of the AT 1-receptor blocker, candesartan, in the prevention of atherosclerosis in Watanabe heritable hyperlipidaemic (WHHL) rabbits and also the effect of AT1-receptor blockade in the uptake of oxidised LDL by macrophage cell cultures. In the first set of experiments, 12 WHHL rabbits were randomly assigned to three groups: placebo, atenolol 5 mg/kg daily or candesartan 2 mg/kg daily for six months. Compared with controls and atenolol-treated rabbits, candesartan treatment resulted in a significant 50—60% reduction of atherosclerotic plaque formation and a 66% reduction in cholesterol accumulation in the thoracic aorta. Studies in macrophage cultures indicated that candesartan prevented uptake of oxidised LDL-(oxLDL)-cholesterol by cultured macrophages. Candesartan inhibited the uptake of oxLDL in a dose-dependent manner, reaching a maximum inhibition of 70% at concentrations of 5.6 µg/ml. Further studies in other animal models and well-designed trials in humans are warranted to further explore the role of AT1-receptor blockade in the prevention of atherosclerosis.

1991 ◽  
Vol 7 (1) ◽  
pp. 71-75 ◽  
Author(s):  
S. Tsagarakis ◽  
L. H. Rees ◽  
G. M. Besser ◽  
A. Grossman

ABSTRACT We have employed an acute explant system of the rat hypothalamus in vitro, as previously described, to examine the role of calcium and calmodulin in the release of corticotrophin-releasing hormone-41 (CRH-41). Release of CRH-41, as determined by radioimmunoassay, was stimulated in a dose-dependent manner by the membrane-depolarizing agents KCl and veratridine. Stimulation was also observed with the calcium ionophore A23187. The calcium channel blocker verapamil (1–100 μmol/l) inhibited both KCl-and veratridine-induced release in a dose-dependent manner (maximum inhibition of 75% and 60% respectively), thus providing further evidence that calcium entry is required for secretion of CRH-41 following membrane depolarization. Trifluoperazine (1–100 μmol/1), an inhibitor of calmodulin—calcium interaction, decreased both KCl- and veratridine-evoked CRH-41 secretion in a dose-dependent fashion (maximum inhibition of 50% and 30% respectively). Similarly, phenytoin, a calmodulin-dependent kinase inhibitor, in the concentration range of 1–100 μmol/1, also decreased depolarization-induced CRH-41 release in a dose-dependent manner. The basal release of CRH-41 was unaffected by either treatment. Finally, both calmodulin inhibitors (10 μmol/l) decreased CRH-41 release induced by the calcium ionophore A23187 (10 μmol/l). These data provide evidence for the role of calcium in membrane depolarization-induced stimulus-secretion coupling of rat hypothalamic CRH-41. Furthermore, inhibition of the stimulatory responses by two separate classes of calmodulin inhibitors suggests a role for calmodulin, at least in part, in this process.


1997 ◽  
Vol 272 (1) ◽  
pp. R26-R33 ◽  
Author(s):  
Y. Saiki ◽  
T. Watanabe ◽  
N. Tan ◽  
M. Matsuzaki ◽  
S. Nakamura

The present study was carried out using a biotelemetry system to investigate whether central angiotensin II (ANG II) is involved in stress-induced cardiovascular and body temperature responses in rats. Intracerebroventricular injections of the nonselective ANG II-receptor antagonist saralasin and of the ANG II AT1-receptor antagonist losartan attenuated both the heart rate and pressor responses to immobilization stress in a dose-dependent manner. The elevation of plasma norepinephrine and epinephrine induced by immobilization stress was also suppressed by central ANG II-receptor blockade, suggesting a general attenuation of stress-induced sympathetic nervous and adrenomedullary activity by central ANG II-receptor blockade. The hyperthermia induced by immobilization stress was attenuated by central ANG II AT1-receptor blockade in a dose-dependent manner. The effects of central saralasin on the blood pressure response induced by immobilization stress were greater in Wistar-Kyoto rats than in spontaneously hypertensive rats. The present results suggest that central ANG II AT1-receptors are involved in expression of the tachycardia and hyperthermia, as well as the pressor response, induced by immobilization stress.


2019 ◽  
Vol 17 (4) ◽  
pp. 426-431
Author(s):  
Jin Xuezhu ◽  
Li Jitong ◽  
Nie Leigang ◽  
Xue Junlai

The main purpose of this study is to investigate the role of citrus leaf extract in carbon tetrachloride-induced hepatic injury and its potential molecular mechanism. Carbon tetrachloride was used to construct hepatic injury animal model. To this end, rats were randomly divided into 4 groups: control, carbon tetrachloride-treated, and two carbon tetrachloride + citrus leaf extract-treated groups. The results show that citrus leaf extract treatment significantly reversed the effects of carbon tetrachloride on the body weight changes and liver index. Besides, treatment with citrus leaf extract also reduced the levels of serum liver enzymes and oxidative stress in a dose-dependent manner. H&E staining and western blotting suggested that citrus leaf extract could repair liver histological damage by regulating AMPK and Nrf-2.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


1990 ◽  
Vol 123 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Xiangbing Wang ◽  
Noriyuki Sato ◽  
Monte A. Greer ◽  
Susan E. Greer ◽  
Staci McAdams

Abstract. The mechanism by which 30% medium hyposmolarity induces PRL secretion by GH4C1 cells was compared with that induced by 100 nmol/l TRH or 30 mmol/l K+. Removing medium Ca2+, blocking Ca2+ channels with 50 μmol/l verapamil, or inhibiting calmodulin activation with 20 μmol/l trifluoperazine, 10 μmol/l chlorpromazine or 10 μmol/l pimozide almost completely blocked hyposmolarity-induced secretion. The smooth muscle relaxant, W-7, which is believed relatively specific in inhibiting the Ca2+-calmodulin interaction, depressed hyposmolarity-induced PRL secretion in a dose-dependent manner (r = −0.991, p<0.01 ). The above drugs also blocked or decreased high K+-induced secretion, but had much less effect on TRH-induced secretion. Secretion induced by TRH, hyposmolarity, or high K+ was optimal at pH 7.3-7.65 and was significantly depressed at pH 6.0 or 8.0, indicating that release of hormone induced by all 3 stimuli is due to an active cell process requiring a physiologic extracellular pH and is not produced by nonspecific cell toxicity. The data suggest hyposmolarity and high K+ may share some similarities in their mechanism of stimulating secretion, which is different from that of TRH.


Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 752-762 ◽  
Author(s):  
Alireza Sameny ◽  
John Locke

Transposable elements are found in the genomes of all eukaryotes and play a critical role in altering gene expression and genome organization. In Drosophila melanogaster, transposable P elements are responsible for the phenomenon of hybrid dysgenesis. KP elements, a deletion-derivative of the complete P element, can suppress this mutagenic effect. KP elements can also silence the expression of certain other P-element-mediated transgenes in a process called P-element-dependent silencing (PDS), which is thought to involve the recruitment of heterochromatin proteins. To explore the mechanism of this silencing, we have mobilized KP elements to create a series of strains that contain single, well-defined KP insertions that show PDS. To understand the quantitative role of KP elements in PDS, these single inserts were combined in a series of crosses to obtain genotypes with zero, one, or two KP elements, from which we could examine the effect of KP gene dose. The extent of PDS in these genotypes was shown to be dose dependent in a logarithmic rather than linear fashion. A logarithmic dose dependency is consistent with the KP products interacting with heterochromatic proteins in a concentration-dependent manner such that two molecules are needed to induce gene silencing.


1993 ◽  
Vol 106 (1) ◽  
pp. 109-119 ◽  
Author(s):  
M.J. May ◽  
G. Entwistle ◽  
M.J. Humphries ◽  
A. Ager

Previous studies have shown that unactivated lymphocytes bind to CS1 peptide and that the adhesion of these cells to high endothelium is inhibited by CS1 peptide. These results suggest that lymphocyte binding occurs via recognition of the CS1-containing splice variant of fibronectin expressed on the high endothelial surface. We have now extended these studies by determining the role of the CS1 receptor, alpha 4 beta 1 (VLA-4) and the alternative VLA-4 ligand, VCAM-1 in a rat model of lymphocyte-high endothelial cell interaction. Anti-VLA-4 antibody, HP2/1, blocked lymphocyte adhesion to resting and IFN-gamma (interferon-gamma) pretreated cultured high endothelial cells (HEC) in a dose-dependent manner with maximal inhibition of 60%. HP2/1 completely blocked the adhesion of rat lymphocytes to immobilized CS1 peptide and to a recombinant soluble (rs) form of human VCAM-1. Lymphocyte binding to rsVCAM-1 was also completely blocked by CS1 peptide. Anti-rat VCAM-1 monoclonal antibody 5F10 inhibited adhesion to untreated and IFN-gamma-treated HEC equally and its effect at 50% inhibition was slightly less than that of HP2/1. These findings suggest that a CS1 peptide-inhibitable ligand expressed by high endothelium is VCAM-1. The majority of cultured HEC expressed significant levels of VCAM-1 under basal conditions, as did HEV in peripheral lymph nodes. VCAM-1 expression by HEC was upregulated by cytokine pretreatment and the effects were ordered: IFN-gamma &gt; TNF-alpha &gt; IL-1 beta. The results described here demonstrate that rat peripheral lymph node HEC express VCAM-1, its expression is upregulated by cytokines, in particular IFN-gamma, and it supports the adhesion of unactivated lymphocytes. They also suggest that the VLA-4/VCAM-1 adhesion pathway may operate during the constitutive migration of lymphocytes into lymphoid organs. Although the mechanism of CS1 peptide inhibition was not determined, these results show that VCAM-1 is a CS1 peptide-inhibitable ligand and therefore CS1, on its own, cannot be used as a specific indicator of fibronectin activity.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (11) ◽  
pp. 58-60
Author(s):  
N Solanki ◽  
◽  
S. K Bhavsar

Ficus racemosa is used in traditional system of medicine for various health problems and diseases, and is commonly known as Gular fig. The main objective was to study its effects against streptozotocin induced diabetic neuropathy by structural and functional marker. Investigation of diabetic neuropathy was carried out through functional and structural assessment in streptozotocin induced in diabetic rats. Diabetic rats were treated for 28 days in dose dependent manner of Ficus racemosa aqueous extract (250 mg/kg and 500 mg/kg) and ethanolic extract (200 mg/kg and 400 mg/kg). Study showed marked protection observed by Ficus racemosa in hippocampus region of brain and sciatic nerve tissues. Ficus racemosa treatment showed improvement in functional and structural markers, which strongly suggest its protective role in diabetic neuropathy.


1981 ◽  
Author(s):  
J P Cazenave ◽  
A Beretz ◽  
A Stierlé ◽  
R Anton

Injury to the endothelium (END) and subsequent platelet (PLAT)interactions with the subEND are important steps in thrombosis and atherosclerosis. Thus,drugs that protect the END from injury and also inhibit PLAT function are of interest. It has been shown that some flavonoids(FLA), a group of compounds found in plants, prevent END desquamation in vivo, inhibit cyclic nucleotide phosphodiesterases(PDE)and inhibit PLAT function. We have studied the structure-activity relationships of 13 purified FLA on aggregation and secretion of 14c-5HT of prelabeled washed human PLAT induced by ADP, collagen(COLL) and thrombin(THR). All the FLA were inhibitors of the 3 agents tested. Quercetin(Q), was the second best after fisetin. It inhibited secretion and aggregation with I50 of 330µM against 0.1 U/ML.THR, 102µM against 5µM ADP and 40 µM against COLL. This inhibitory effect is in the range of that of other PDE inhibitors like dipyridamole or 3-isobutyl-l- methylxanthine. The aggregation induced by ADP, COLL and THR is at least mediated by 3 mechanisms that can be inhibited by increasing cAMP levels. We next investigated if Q, which is a PDE inhibitor of bovine aortic microsomes,raises PLAT cAMP levels. cAMP was measured by a protein-binding method. ADP- induced aggregation(5µM) was inhibited by PGI2 (0.1 and 0.5 nM) . Inhibition was further potentiated(l.7 and 3.3 times) by lOµM Q, which alone has no effect on aggregation. The basal level of cAMP(2.2 pmol/108PLAT) was not modified by Q (50 to 500µM). Using these concentrations of Q,the rise in cAMP caused by PGI2(0.1 and 0.5nM) was potentiated in a dose dependent manner. Q potentiated the effect of PGI2 on the maximum level of cAMP and retarded its breakdown. Thus Q and possibly other FLA could inhibit the interaction of PLAT with the components of the vessel wall by preventing END damage and by inhibiting PLAT function through a rise in cAMP secondary to PDE inhibition and potentiation of the effect of vascular PGI2 on PLAT adenylate cyclase.


1985 ◽  
Vol 5 (8) ◽  
pp. 667-671 ◽  
Author(s):  
M. S. Suleiman

Decreasing extracellular sodium concentration was found to produce a contractile response of rabbit ileal smooth muscle. As the concentration decreases, the amplitude of contraction increases, thus producing a dose-dependent curve. Harmaline, a competitor for sodium, was found to inhibit the sodium gradient-dependent contractions in a dose-dependent manner. The results are interpreted as harmaline inhibiting a Na–Ca exchange mechanism present in ileal smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document