Temperature glass and conductivity behavior of epoxy deproteinized natural rubber in ternary blend of EDPNR/PMMA/LiCF3SO3

Author(s):  
Trịnh Thị Hang ◽  
I Putu Mahendra ◽  
Tran Manh Thang ◽  
Seiichi Kawahara ◽  
Phan Trung Nghia

The temperature glass behavior of epoxy deproteinized natural rubber/polymethylmethacrylate/lithium trifluoromethanesulfonate (EDPNR/PMMA/LiCF3SO3) and the conductivity behavior of EDPNR in the ternary blends were studied by DSC and multichannel potentiostat. The DSC result revealed the temperature glass of the EDPNR was shifted to the right with the increase of lithium salt amount in these binary blends composition. However, in the ternary blends of EDPNR/PMMA/LiCF3SO3 the temperature glass revealed the miscibility of these ternary blends. Two different temperature glass values were obtained when the ratio of EDPNR in EDPNR/PMMA was less than 80 wt.%. The ionic conductivity of EDPNR could be improved by increasing the amount of lithium salt up to 35 wt.%, after this amount the ionic conductivity of EDPNR was significantly decreased. While in the ternary blends, the highest ionic conductivity value was found at the ratio 80/20 of EDPNR/PMMA. Furthermore, the factors influencing the temperature glass and conductivity behavior of EDPNR were systematically studied in this work. The results demonstrated an intimate correlation between temperature glass and conductivity behavior of EDPNR.

Ionic conductivity polymer electrolyte film based on epoxidized deproteinized natural rubber (EDPNR) and lithium salt lithium triflate (LiCF3SO3) were prepared by solution casting technique. The EDPNR was prepared from deproteinized natural rubber latex (DNR) epoxidized in the latex stage with fresh peracetic acid 33%, which was deproteinized by incubation of the latex with 0,1 wt% urea and 1 wt% surfactant. The ionic conductivity of EDPNR mixed with lithium salt was investigated through impedance analysis. The results show that the conductivity of EDPNR/ LiCF3SO3 mixture was dependent on LiCF3SO3 salt concentration and amount of epoxy group. The highest ionic conductivity at room temperature obtained is 1,71 x 10-5 S.cm-1 at 35 wt% LiCF3SO3 and 45 mol% epoxy groups. Fourier transform infrared spectroscopy (FTIR) spectra showed evidence of complexation between EDPNR and LiCF3SO3. Glass transition temperature, Tg displayed an increasing trend in which are the increase in salt concentration and the increase in epoxy group concentration.


2006 ◽  
Vol 177 (37-38) ◽  
pp. 3251-3257 ◽  
Author(s):  
W KLINKLAI ◽  
S KAWAHARA ◽  
E MARWANTA ◽  
T MIZUMO ◽  
Y ISONO ◽  
...  

2012 ◽  
Vol 129 (4) ◽  
pp. 1868-1874 ◽  
Author(s):  
Mahdi Ghelichi ◽  
Nader Taheri Qazvini ◽  
Seyed Hassan Jafari ◽  
Hossein Ali Khonakdar ◽  
Yaser Farajollahi ◽  
...  

2003 ◽  
Vol 39 (8) ◽  
pp. 1707-1712 ◽  
Author(s):  
Warunee Klinklai ◽  
Seiichi Kawahara ◽  
Tomonobu Mizumo ◽  
Masahiro Yoshizawa ◽  
Jitladda Tangpakdee Sakdapipanich ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2372
Author(s):  
Yesenia Sánchez-Cardona ◽  
Claudia E. Echeverri-Cuartas ◽  
Marta E. Londoño López ◽  
Natalia Moreno-Castellanos

Chitosan scaffolds based on blending polymers are a common strategy used in tissue engineering. The objective of this study was evaluation the properties of scaffolds based on a ternary blend of chitosan (Chi), gelatin (Ge), and polyvinyl alcohol (PVA) (Chi/Ge/PVA), which were prepared by cycles of freeze-thawing and freeze-drying. It then was used for three-dimensional BRIN-BD11 beta-cells culturing. Weight ratios of Chi/Ge/PVA (1:1:1, 2:2:1, 2:3:1, and 3:2:1) were proposed and porosity, pore size, degradation, swelling rate, compressive strength, and cell viability analyzed. All ternary blend scaffolds structures are highly porous (with a porosity higher than 80%) and interconnected. The pore size distribution varied from 0.6 to 265 μm. Ternary blends scaffolds had controllable degradation rates compared to binary blend scaffolds, and an improved swelling capacity of the samples with increasing chitosan concentration was found. An increase in Young’s modulus and compressive strength was observed with increasing gelatin concentration. The highest compressive strength reached 101.6 Pa. The MTT assay showed that the ternary blends scaffolds P3 and P4 supported cell viability better than the binary blend scaffold. Therefore, these results illustrated that ternary blends scaffolds P3 and P4 could provide a better environment for BRIN-BD11 cell proliferation.


2018 ◽  
Vol 42 (17) ◽  
pp. 14179-14187
Author(s):  
Janisha Jayadevan ◽  
G. Unnikrishnan

Novel blend membranes from physico-chemically modified deproteinized natural rubber latex for drug release applications.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Qolby Sabrina ◽  
Titik Lestariningsih ◽  
Christin Rina Ratri ◽  
Achmad Subhan

Solid polymer electrolyte (SPE) appropriate to solve packaging leakage and expansion volume in lithium-ion battery systems. Evaluation of electrochemical performance of SPE consisted of mixture lithium salt, solid plasticizer, and polymer precursor with different ratio. Impedance spectroscopy was used to investigate ionic conduction and dielectric response lithium bis(trifluoromethane)sulfony imide (LiTFSI) salt, and additive succinonitrile (SCN) plasticizer. The result showing enhanced high ionic conductivity. In half-cell configurations, wide electrochemical stability window of the SPE has been tested. Have stability window at room temperature, indicating great potential of SPE for application in lithium ion batteries. Additive SCN contribute to forming pores that make it easier for the li ion to move from the anode to the cathode and vice versa for better perform SPE. Pore of SPE has been charaterization with FE-SEM. Additive 5% w.t SCN shows the best ionic conductivity with 4.2 volt wide stability window and pretty much invisible pores.


1999 ◽  
Vol 72 (4) ◽  
pp. 712-720 ◽  
Author(s):  
Jitladda Tangpakdee Sakdapipanich ◽  
Tippawan Kowitteerawut ◽  
Krisda Suchiva ◽  
Yasuyuki Tanaka

Abstract The linear character of transesterified deproteinized natural rubber (DPNR-TE) was confirmed by the analysis of terminal groups with NMR and viscometric analyses. The branch content of DPNR rubber from fresh latex was found to range from 0.3 to 1.3 and 0.7 to 3.2, based on tri- and tetra-functionalities, respectively. The plot between the number of branch-points and molecular weight (MW) can be divided into three fractions: (A) the rubber fractions in MW ranging from 2.4×105 to 1.9×106; (B) between 1.9×105 and 2.4×105; and (C) those of MW less than 1.9×105. The fraction (A) showed the number of branch-points per a branched molecule (m) higher than that of fractions (B) and (C). This plot is superimposable with the bimodal molecular-weight distribution (MWD) of Hevea rubber, showing a good coinciding of peak-tops at the high and low MW fractions. It seems likely that there is a close relationship between the number of branch-point and bimodal MWD of natural rubber.


2011 ◽  
Vol 306-307 ◽  
pp. 50-57 ◽  
Author(s):  
Can Zhong He ◽  
Zheng Peng ◽  
Jie Ping Zhong ◽  
Shuang Quan Liao ◽  
Xiao Dong She ◽  
...  

Deproteinization of natural rubber was achieved in the latex stage. The structure of deproteinized natural rubber (DPNR) was characterized by fourier transform infrared spectroscopy (FTIR). The thermo degradation of DPNR was studied by thermogravimetry analysis (TG) under air atmosphere and nitrogen atmosphere. The kinetic parameters apparent activation energies (Ea) of the thermal decomposition reaction been calculated from the TG curves using the method described by Broido. And the results were compared with the thermo degradation of natural rubber (NR) under the same conditions. The effect of proteins in natural rubber latex on thermal/ thermo-oxidative stability of NR was discussed. The results show that: the absorptions of the proteins in DPNR at 1546 ㎝-1, compared to NR, become significantly weaker, nearly disappear, which indicates most of proteins has been removed from NR. The thermo degradation of DPNR in nitrogen atmosphere is a one-step reaction. The initial degradation temperature (T0) 、the maximum degradation temperature(Tp) and the final degradation temperature(Tf)as well as the Ea of DPNR are higher than those of NR, which indicates that DPNR represents a better thermal stability than NR under nitrogen atmosphere. Thermo-oxidative degradation of DPNR and NR are two-step reaction. The characteristic temperatures (T0, Tp and Tf) of DPNR are lower than those of NR. The Ea during the First Step of Thermooxidative Degradation of DPNR are also lower than those of NR. These results prove that the thermo-oxidative stability of DPNR is worse than that of NR. Protein is the key role to the thermal stability of natural rubber.


Sign in / Sign up

Export Citation Format

Share Document