scholarly journals MiR-34a Regulates Nasopharyngeal Carcinoma Radiosensitivity by Targeting SIRT1

2020 ◽  
Vol 19 ◽  
pp. 153303382094042
Author(s):  
Yang Liu ◽  
Qinshan Li ◽  
Huiling Liang ◽  
Miaomiao Xiang ◽  
Dongxin Tang ◽  
...  

Background/Aims: Nasopharyngeal carcinoma is a common head and neck cancer in South China and Southeast Asia. Radiotherapy is the standard treatment for nasopharyngeal carcinoma. Accumulating evidence showed that the expression of miR-34a was abnormal in nasopharyngeal carcinoma. Here, this study investigates the effect of miR-34a on radiosensitivity of nasopharyngeal carcinoma cells and explored the underlying mechanisms. Methods: Reverse transcription quantitative polymerase chain reaction was used to analyze the expression of miR-34a in nasopharyngeal carcinoma cell lines and NP69 cells. The effect of miR-34a on radiosensitivity of nasopharyngeal carcinoma (CNE-1 cells) was evaluated by Cell Counting Kit-8, flow cytometry, and Transwell migration assays following transfection with miR-34a mimic. Luciferase reporter assay was used to assess the target genes of miR-34a. Results: In this study, it revealed that miR-34a was downregulated, while silent information regulator 1 was upregulated in nasopharyngeal carcinoma cell lines. The overexpression of miR-34a enhanced radiation-induced proliferation and migration inhibition and apoptosis in CNE-1 cells. Bioinformatics, Luciferase reporter, reverse transcription quantitative polymerase chain reaction, and Western blotting assays indicated that silent information regulator 1 is a direct target of miR-34a in nasopharyngeal carcinoma cells. Knockdown of silent information regulator 1 enhanced radiosensitivity of nasopharyngeal carcinoma cells as evidenced by increasing proliferation and migration inhibition and apoptosis after radiation exposure. Conclusion: In summary, our results indicated that the overexpression of miR-34a enhanced radiosensitivity of nasopharyngeal carcinoma cells by targeting silent information regulator 1. Further studies are warranted to investigate the potential use of miR-34a in the clinical management and treatment prediction of patients with nasopharyngeal carcinoma.

2020 ◽  
Vol 39 (12) ◽  
pp. 1607-1618
Author(s):  
S Zhao ◽  
W Xiong ◽  
K Xu

Osteosarcoma is characterized by high malignancy and high metastasis rate, resulting in high mortality and disability. MiR-663a has been reported in a variety of tumors to promote tumorigenesis. However, miR-663a has not been reported in the pathogenesis of osteosarcoma. Bioinformatics analysis and experiments including real-time quantitative polymerase chain reaction (RT-qPCR), luciferase reporter, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, RNA immunoprecipitation, and flow cytometry assay were applied to explore the function and mechanism of miR-663a in MG63, U2OS, Saos-2, SF-86, and hFOB1.19 cells. In this study, we found that miR-663a is highly expressed in osteosarcoma. At the same time, we discovered that miR-663a facilitates cell proliferation and migration, whereas suppresses cell apoptosis in osteosarcoma. Through a series of biological experiments, it was found that miR-663a regulates the cellular process in osteosarcoma by modulating the expression of MYL9. In addition, we also found that long noncoding RNA (lncRNA) GAS5 serves as a molecular sponge for miR-663a and regulates the progression of osteosarcoma via the ceRNA mechanism. We uncover that miR-663a promotes osteosarcoma development through targeting MYL9, which was regulated by lncRNA GAS5.


2021 ◽  
pp. 096032712110434
Author(s):  
Yunlai Zhi ◽  
Fanghu Sun ◽  
Chengkuan Cai ◽  
Haitao Li ◽  
Kunpeng Wang ◽  
...  

Background Bladder cancer (BCa) is a common genitourinary malignancy with higher incidence in males. Long intergenic non-protein coding RNA 265 (LINC00265) is identified as an oncogene in many malignancies, while its role in BCa development remains unknown. Purpose To explore the functions and mechanism of LINC00265 in BCa Research Design Reverse transcription quantitative polymerase chain reaction was performed to examine LINC00265 expression in BCa cells. Cell counting kit-8 assays, colony formation assays, TdT-mediated dUTP Nick-End Labeling assays, and Transwell assays were conducted to examine BCa cell viability, proliferation, apoptosis, and migration. Luciferase reporter assays and RNA immunoprecipitation assays were carried out to explore the binding capacity between miR-4677-3p and messenger RNA fibroblast growth factor 6 (FGF6) (or LINC00265). Xenograft tumor model was established to explore the role of LINC00265 in vivo. Results LINC00265 was highly expressed in BCa cells. LINC00265 knockdown inhibited xenograft tumor growth and BCa cell viability, proliferation and migration while enhancing cell apoptosis. Moreover, LINC00265 interacted with miR-4677-3p to upregulate the expression of FGF6. FGF6 overexpression reversed the suppressive effect of LINC00265 knockdown on malignant phenotypes of BCa cells. Conclusions LINC00265 promotes the viability, proliferation, and migration of BCa cells by binding with miR-4677-3p to upregulate FGF6 expression.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1193-1201
Author(s):  
Zhang E ◽  
Chunli Li ◽  
Yuandi Xiang

AbstractThis research aimed to illustrate the biological function and associated regulatory mechanism of lncRNA FOXD3-AS1 (FOXD3-AS1) in nasopharyngeal carcinoma (NPC). This research initially found that FOXD3-AS1 was obviously upregulated in NPC cell lines by quantitative reverse transcription polymerase chain reaction (qRT-PCR) detection. Next, the direct target of FOXD3-AS1 was predicted by bioinformatics and further verified by dual-luciferase reporter assay. MiroRNA-135a-5p (miR-135a-5p) was identified as the target gene of FOXD3-AS1 and down-expressed in C666-1 cells compared to NP69. In addition, function assays were conducted in C666-1 cells, including methyl tetrazolium assay, flow cytometry, Caspase3 activity detection, and western blot assay. Our results suggested that miR-135a-5p upregulation inhibited NPC cell growth, enhanced cell apoptosis, promoted Caspase3 activity, increased cleaved-Caspase3, and reduced pro-Caspase3 level. Moreover, we found that FOXD3-AS1 knockdown notably inhibited C666-1 cell proliferation, increased cell apoptosis, enhanced Caspase3 activity, enhanced cleaved-Caspase3 expression, and suppressed pro-Caspase3 level in C666-1 cells. However, these findings were reversed in C666-1 cells by miR-135a-5p mimic co-transfection. To sum up, our data showed that FOXD3-AS1 knockdown regulated cell growth and apoptosis in NCP cells via altering miR-135a-5p expression, suggesting that FOXD3-AS1 might be a therapeutic target for NPC diagnosis and treatment.


2019 ◽  
Vol 18 ◽  
pp. 153303381985018 ◽  
Author(s):  
Baoying Wang ◽  
Wenjing Dong ◽  
Xiaojie Li

Micro-RNAs play critical roles in initiation and progression of hepatocellular carcinoma. However, the biological role of microRNA-145-5p in hepatocellular carcinoma and how it works are still not clearly understood. Expression levels of microRNA-145-5p in hepatocellular carcinoma cell lines were examined by reverse transcription quantitative polymerase chain reaction. Cell counting kit-8, wound-healing assay, and flow cytometry assay were conducted to investigate the role of microRNA-145-5p von proliferation, migration, and apoptosis. Luciferase reporter assay and Western blot were performed to investigate the correlation between microRNA-145-5p and RAB18. We found microRNA-145-5p was downregulated in hepatocellular carcinoma cell lines compared to the normal cell line. Overexpression of microRNA-145-5p inhibited the proliferation and migration but promoted apoptosis of hepatocellular carcinoma cells in vitro. RAB18 was validated a target of microRNA-145-5p and ectopic expression of RAB18 can promote the proliferation and migration but inhibit apoptosis of hepatocellular carcinoma cells. These findings indicate that microRNA-145-5p functions as a novel tumor suppressor through targeting RAB18, suggesting that microRNA-145-5p might be a potential new therapeutic molecule for the treatment of hepatocellular carcinoma.


2021 ◽  
Vol 11 (1) ◽  
pp. 99-105
Author(s):  
Hualong Qiang ◽  
Shiyin Ma ◽  
Xiaodong Zhan ◽  
Chengyi Jiang ◽  
Yuefeng Han ◽  
...  

This study intends to clarify lncRNA SATB2-AS1’s role in growth, invasion and migration of nasopharyngeal carcinoma cells and its effect on radiotherapy. The lncRNA array was used to analyze the differential expression of lncRNA in nasopharyngeal carcinoma biopsy tissues. QRT-PCR measured the levels of SATB2-AS1 and TIMP2 along with analysis of cell growth, migration, and invasion ability by MTT method and colony formation experiment. Luciferase reporter gene test assessed the relationship between SATB2-AS1 and TIMP2. LncRNA array analysis found significantly increased SATB2-AS1 expression in nasopharyngeal carcinoma tissues. Ectopic SATB2-AS1 overexpression in CNE1 cells promoted cell proliferation, migration, invasion and enhanced radiotherapy sensitivity. Bioinformatics and experiments confirmed that TIMP2 was a target of SATB2-AS1 and it participated in the upregulation of MMP-10 induced by SATB2-AS1. lncRNA SATB2-AS1 can promote the migration and invasion of nasopharyngeal carcinoma cells, indicating that it could be a potential marker for the treatment and prognosis.


2012 ◽  
Vol 5 (8) ◽  
pp. 645-650 ◽  
Author(s):  
Wei Jie ◽  
Qi-Yi He ◽  
Bo-Tao Luo ◽  
Shao-Jiang Zheng ◽  
Yue-Qiong Kong ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Jian-kai Yang ◽  
Hong-jiang Liu ◽  
Yuanyu Wang ◽  
Chen Li ◽  
Ji-peng Yang ◽  
...  

Background and Objective: Exosomes communicate inter-cellularly and miRNAs play critical roles in this scenario. MiR-214-5p was implicated in multiple tumors with diverse functions uncovered. However, whether miR-214-5p is mechanistically involved in glioblastoma, especially via exosomal pathway, is still elusive. Here we sought to comprehensively address the critical role of exosomal miR-214-5p in glioblastoma (GBM) microenvironment.Methods:The relative expression of miR-214-5p was determined by real-time PCR. Cell viability and migration were measured by MTT and transwell chamber assays, respectively. The secretory cytokines were measured with ELISA kits. The regulatory effect of miR-214-5p on CXCR5 expression was interrogated by luciferase reporter assay. Protein level was analyzed by Western blot.Results:We demonstrated that miR-214-5p was aberrantly overexpressed in GBM and associated with poorer clinical prognosis. High level of miR-214-5p significantly contributed to cell proliferation and migration. GBM-derived exosomal miR-214-5p promoted inflammatory response in primary microglia upon lipopolysaccharide challenge. We further identified CXCR5 as the direct target of miR-214- 5p in this setting.Conclusion:Overexpression of miR-214-5p in GBM modulated the inflammatory response in microglia via exosomal transfer.


Sign in / Sign up

Export Citation Format

Share Document