Concordance of Several Subcellular Interactions Initiates Alzheimer’s Dementia: Their Reversal Requires Combination Treatment

2017 ◽  
Vol 32 (3) ◽  
pp. 166-181 ◽  
Author(s):  
W. J. Fessel

The pathogenesis of Alzheimer’s disease involves multiple pathways that, at the macrolevel, include decreased proliferation plus increased loss affecting neurons, astrocytes, and capillaries and, at the subcellular level, involve several elements: amyloid/amyloid precursor protein, presenilins, the unfolded protein response, the ubiquitin/proteasome system, the Wnt/catenin system, the Notch signaling system, mitochondria, mitophagy, calcium, and tau. Data presented show the intimate, anatomical interactions between neurons, astrocytes, and capillaries; the interactions between the several subcellular factors affecting those cells; and the treatments that are currently available and that might correct dysfunctions in the subcellular factors. Available treatments include lithium, valproate, pioglitazone, erythropoietin, and prazosin. Since the subcellular pathogenesis involves multiple interacting elements, combination treatment would be more effective than administration of a single drug directed at only 1 element. The overall purpose of this presentation is to describe the pathogenesis in detail and to explain the proposed treatments.

2002 ◽  
Vol 158 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Cole M. Haynes ◽  
Sabrina Caldwell ◽  
Antony A. Cooper

We have identified a new pathway of ER-associated degradation in Saccharomyces cerevisiae that functions separately from the HRD/DER pathway comprised of Hrd1p, Hrd3p, Der1p, and Ubc7p. This pathway, termed Hrd1p independent-proteolysis (HIP), is capable of recognizing and degrading both lumenal (CPY* and PrA*), and integral membrane proteins (Sec61–2p) that misfold in the ER. CPY* overexpression likely saturates the HRD/DER pathway and activates the HIP pathway, so the slowed degradation kinetics of CPY* in a hrd1Δ strain is restored to a wild-type rate when CPY* is overexpressed. Substrates of HIP require vesicular trafficking between the ER and Golgi apparatus before degradation by the ubiquitin-proteasome system. Ubiquitination of HIP substrates does not involve the HRD/DER pathway ubiquitin ligase Hrd1p, but instead uses another ubiquitin ligase, Rsp5p. HIP is regulated by the unfolded protein response as Ire1p is necessary for the degradation of CPY* when overexpressed, but not when CPY* is expressed at normal levels. Both the HIP and HRD/DER pathways contribute to the degradation of CPY*, and only by eliminating both is CPY* degradation completely blocked.


2019 ◽  
Vol 218 (9) ◽  
pp. 3002-3018 ◽  
Author(s):  
Fei-Yun Chen ◽  
Min-Yu Huang ◽  
Yu-Min Lin ◽  
Chi-Huan Ho ◽  
Shu-Yu Lin ◽  
...  

The BH3-only pro-apoptotic protein BIK is regulated by the ubiquitin–proteasome system. However, the mechanism of this regulation and its physiological functions remain elusive. Here, we identify Cul5-ASB11 as the E3 ligase targeting BIK for ubiquitination and degradation. ER stress leads to the activation of ASB11 by XBP1s during the adaptive phase of the unfolded protein response, which stimulates BIK ubiquitination, interaction with p97/VCP, and proteolysis. This mechanism of BIK degradation contributes to ER stress adaptation by promoting cell survival. Conversely, genotoxic agents down-regulate this IRE1α–XBP1s–ASB11 axis and stabilize BIK, which contributes in part to the apoptotic response to DNA damage. We show that blockade of this BIK degradation pathway by an IRE1α inhibitor can stabilize a BIK active mutant and increase its anti-tumor activity. Our study reveals that different cellular stresses regulate BIK ubiquitination by ASB11 in opposing directions, which determines whether or not cells survive, and that blocking BIK degradation has the potential to be used as an anti-cancer strategy.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Dmitri Shcherbakov ◽  
Youjin Teo ◽  
Heithem Boukari ◽  
Adrian Cortes-Sanchon ◽  
Matilde Mantovani ◽  
...  

Abstract Translation fidelity is the limiting factor in the accuracy of gene expression. With an estimated frequency of 10−4, errors in mRNA decoding occur in a mostly stochastic manner. Little is known about the response of higher eukaryotes to chronic loss of ribosomal accuracy as per an increase in the random error rate of mRNA decoding. Here, we present a global and comprehensive picture of the cellular changes in response to translational accuracy in mammalian ribosomes impaired by genetic manipulation. In addition to affecting established protein quality control pathways, such as elevated transcript levels for cytosolic chaperones, activation of the ubiquitin-proteasome system, and translational slowdown, ribosomal mistranslation led to unexpected responses. In particular, we observed increased mitochondrial biogenesis associated with import of misfolded proteins into the mitochondria and silencing of the unfolded protein response in the endoplasmic reticulum.


2012 ◽  
Vol 196 (6) ◽  
pp. 689-698 ◽  
Author(s):  
Andrew E. Byrd ◽  
Ileana V. Aragon ◽  
Joseph W. Brewer

Stress in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a multifaceted signaling system coordinating translational control and gene transcription to promote cellular adaptation and survival. Microribonucleic acids (RNAs; miRNAs), single-stranded RNAs that typically function as posttranscriptional modulators of gene activity, have been shown to inhibit translation of certain secretory pathway proteins during the UPR. However, it remains unclear whether miRNAs regulate UPR signaling effectors directly. In this paper, we report that a star strand miRNA, miR-30c-2* (recently designated miR-30c-2-3p), is induced by the protein kinase RNA activated–like ER kinase (PERK) pathway of the UPR and governs expression of XBP1 (X-box binding protein 1), a key transcription factor that augments secretory capacity and promotes cell survival in the adaptive UPR. These data provide the first link between an miRNA and direct regulation of the ER stress response and reveal a novel molecular mechanism by which the PERK pathway, via miR-30c-2*, influences the scale of XBP1-mediated gene expression and cell fate in the UPR.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Karina Cuanalo-Contreras ◽  
Abhisek Mukherjee ◽  
Claudio Soto

The misfolding, aggregation, and tissue accumulation of proteins are common events in diverse chronic diseases, known as protein misfolding disorders. Many of these diseases are associated with aging, but the mechanism for this connection is unknown. Recent evidence has shown that the formation and accumulation of protein aggregates may be a process frequently occurring during normal aging, but it is unknown whether protein misfolding is a cause or a consequence of aging. To combat the formation of these misfolded aggregates cells have developed complex and complementary pathways aiming to maintain protein homeostasis. These protective pathways include the unfolded protein response, the ubiquitin proteasome system, autophagy, and the encapsulation of damaged proteins in aggresomes. In this paper we review the current knowledge on the role of protein misfolding in disease and aging as well as the implication of deficiencies in the proteostasis cellular pathways in these processes. It is likely that further understanding of the mechanisms involved in protein misfolding and the natural defense pathways may lead to novel strategies for treatment of age-dependent protein misfolding disorders and perhaps aging itself.


2021 ◽  
Author(s):  
Gabriela Vargas ◽  
Omar Humberto Cortes ◽  
Eloisa Natalia Arias-Munoz ◽  
Sergio Felipe Hernandez-Galaz ◽  
Cristobal Cerda-Troncoso ◽  
...  

Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation but independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER protein of short-half life and a well-known substrate of the proteasome. We found that increased HERPUD1 stability by deletion of its ubiquitin-like domain (UBL) plays a negative role on basal and induced macroautophagy. Moreover, we found it triggers ER expansion by reordering the ER in crystalloid structures, but in the absence of unfolded protein response activation. Surprisingly, we found ER expansion led to an increase in the number and function of lysosomes establishing a tight network with the presence of membrane-contact sites. Importantly, a phosphomimetic S59D mutation within the UBL mimics UBL deletion on its stability and the ER-lysosomal network expansion revealing an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in cell stress survival.


2021 ◽  
Author(s):  
Pascal Demange ◽  
Etienne Joly ◽  
Julien Marcoux ◽  
Patrick R. A. Zanon ◽  
Dymytrii Listunov ◽  
...  

ABSTRACTHundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs. Graphical abstract


Author(s):  
Bert M Verheijen ◽  
Celina Lussier ◽  
Cora Müller-Hübers ◽  
Ralph M Garruto ◽  
Kiyomitsu Oyanagi ◽  
...  

Abstract Guam parkinsonism-dementia (G-PD) is a progressive and fatal neurodegenerative disorder among the native inhabitants of the Mariana Islands that manifests clinically with parkinsonism as well as dementia. Neuropathologically, G-PD is characterized by abundant neurofibrillary tangles composed of hyperphosphorylated tau, marked deposition of transactive response DNA-binding protein 43 kDa (TDP-43), and neuronal loss. The mechanisms that underlie neurodegeneration in G-PD are poorly understood. Here, we report that the unfolded protein response (UPR) is activated in G-PD brains. Specifically, we show that the endoplasmic reticulum (ER) chaperone binding immunoglobulin protein/glucose-regulated protein 78 kDa and phosphorylated (activated) ER stress sensor protein kinase RNA-like ER kinase accumulate in G-PD brains. Furthermore, proteinaceous aggregates in G-PD brains are found to contain several proteins related to the ubiquitin-proteasome system (UPS) and the autophagy pathway, two major mechanisms for intracellular protein degradation. In particular, a mutant ubiquitin (UBB+1), whose presence is a marker for UPS dysfunction, is shown to accumulate in G-PD brains. We demonstrate that UBB+1 is a potent modifier of TDP-43 aggregation and cytotoxicity in vitro. Overall, these data suggest that UPR activation and intracellular proteolytic pathways are intimately connected with the accumulation of aggregated proteins in G-PD.


Cells ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Zhen Dong ◽  
Hongjuan Cui

In normal physiological condition, the maintenance of cellular proteostasis is a prerequisite for cell growth, functioning, adapting to changing micro-environments, and responding to extracellular stress. Cellular proteostasis is maintained by specific proteostasis networks (PNs) to prevent protein misfolding, aggregating, and accumulating in subcellular compartments. Commonly, the PNs are composed of protein synthesis, molecular chaperones, endoplasmic reticulum (ER), unfolded protein response (UPR), stress response pathways (SRPs), secretions, ubiquitin proteasome system (UPS), and autophagy-lysosomal pathways (ALPs). Although great efforts have been made to explore the underlying detailed mechanisms of proteostasis, there are many questions remain to explore, especially in proteostasis regulated by the ALPs. Proteostasis out-off-balance is correlated with various human diseases such as diabetes, stroke, inflammation, hypertension, pulmonary fibrosis, and Alzheimer’s disease. , enhanced regulation of PNs is observed in tumors, thereby indicating that proteostasis may play a pivotal role in tumorigenesis and cancer development. Recently, inhibitors targeting the UPS have shown to be failed in solid tumor treatment. However, there is growing evidence showing that the ALPs play important roles in regulation of proteostasis alone or with a crosstalk with other PNs in tumors. In this review, we provide insights into the proteostatic process and how it is regulated by the ALPs, such as macroautophagy, aggrephagy, chaperone-mediated autophagy, microautophagy, as well as mitophagy during tumor development.


2014 ◽  
Author(s):  
Mohammed A Alfattah ◽  
Paul Anthony McGettigan ◽  
John Arthur Browne ◽  
Khalid M Alkhodair ◽  
Katarzyna Pluta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document