scholarly journals Development and verification of a personalized immune prognostic feature in breast cancer

2020 ◽  
Vol 245 (14) ◽  
pp. 1242-1253 ◽  
Author(s):  
HongLei Wang ◽  
Li Wu ◽  
HongTao Wang

Immune-related genes have great potential as prognostic markers in many types of cancer. Therefore, we have attempted to develop immune-related gene markers to enhance the prognosis of breast cancer; 1159 samples of breast cancer gene expression data and clinical follow-up messages were downloaded from TCGA and GEO, which were classified into training set, test set, and validation set. In the training set, the gene pairs are established according to the relative expression levels between 320 immune genes, in which the prognosis-related gene pairs are screened, and Lasso is used for feature selection to screen the robust biomarkers. A prognostic model of immune gene correlation was set up and verified. Sixty-six IRGPs were obtained, and 17-IRGPs signature was established. 17-IRGPs signature is an independent prognostic indicator for BC patients, which can stratify the risk in the training set and testing series, and AUC of five years survival was greater than 0.7; 17-IRGPs signature had better classification performance in patients with advanced BC. In addition, we compared the prognostic characteristics of 17-IRGPs with four reported breast cancers and clinical stages; 17-IRGPs achieved the highest average C index (0.7, P < 0.05), and functional analysis found that the dysregulated immune environment may be the cause of the observed difference in survival between patient groups defined by our characteristics. 17-IRGPs signature was constructed as a newly developed prognostic indicator to calculate the survival of BC patients. Impact statement Breast cancer is among the highest prevalent malignant tumors worldwide with a low survival ratio. Immune-related genes have great potential as prognostic indicator in many types of tumors. Therefore, we have attempted to develop immune-related gene markers to enhance the prognosis of breast cancer. 17-IRGPs signature was constructed as a newly developed prognostic indicator to predict the survival of BC patients.

Author(s):  
Nan Li ◽  
Kai Yu ◽  
Zhong Lin ◽  
Dingyuan Zeng

Background: Endometrial cancer (EC) is a common gynecological malignancy worldwide. Immunity is closely related to occurrence and prognosis of EC. At the same time, immune-related genes have great potential as prognostic mark-ers in many types of cancer. Objective: Therefore, we attempts to develop immune-related gene markers to enhance prognosis prediction of EC. Methods: 542 samples of EC gene expression data and clinical follow-up information from were downloaded from The Cancer Genome Atlas (TCGA). The samples were randomly divided into two groups, one group as a training set (N=271), and one set as a validation set. (N=271). In the training set, the gene pairs were established based on the relative expression levels of 271 immune genes, and the prognosis-related gene pairs were screened. The lasso was used to select the features, and finally the robust biomarkers were screened. Finally, the prognostic model of the immune gene pair was established and verified by validation data set. Results: 10030 immune gene pair (IRGPs) were obtained, and univariate survival analysis was used to identify 1809 prog-nostic-related IRGPs (p<0.05). 5-IRGPs were obtained by lasso regression feature selection, and multivariate regression was used to establish 5-IRGPs signature, 5-IRGPs signature is an independent prognostic factor for EC patients, and could be risk stratified in patients with TCGA datasets, age, ethnicity, stage, and histological classification (p<0.05). The mean AUC of survival in both the training set and the validation set was greater than 0.7, indicating that 5-IRGPs signature has superior classification performance in patients with EC. In addition, 5-IRGPs have the highest average C index (0.795) compared to the prognostic characteristics of the three endometrial cancers reported in the past and Stage and Age. Conclusion: This study constructed a 5-IRGPs signature as a novel prognostic marker for predicting survival in patients with EC.


2021 ◽  
Author(s):  
Ying Zhong ◽  
Zhe Wang ◽  
Yidong Zhou ◽  
Feng Mao ◽  
Yan Lin ◽  
...  

Abstract Background: Immunotherapy plays an increasingly important role in the treatment of advanced female breast cancer, which has the highest mortality rate among malignant tumors. The purpose of this study was to identify immune-related genes associated with breast cancer prognosis as possible targets of immunotherapy, and their related biological processes and signaling pathways.Methods: Clinical data and gene expression profiles of patients with breast cancer were extracted from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and divided into training (n = 1053) and verification (n = 508) groups. CIBERSORT was used to predict differences in immune cell infiltration in patient subsets stratified according to risk. Gene Ontology (GO) enrichment analysis was used to identify pathways associated with immune-related genes in patient subsets stratified according to risk.Results: The prognostic model composed of 27 immune-related gene pairs significantly distinguished between high- and low-risk patients. Univariate and multivariate analyses indicated that the model was an independent prognostic factor for breast cancer. Among the identified genes, APOBEC3G, PLXNB1, and C3AR1 had not been previously studied in breast cancer and warrant further exploration. CCR chemokine receptor binding, regulation of leukocyte-mediated cytotoxicity, T cell migration, T cell receptor complex, and other pathways were significantly enriched in low-risk patients. M2 and M0 macrophages were more highly expressed in high-risk than in low-risk patients. CD8+ T cells and naïve B cells were more abundant in low-risk than in high-risk patients.Conclusion: The immune-related gene pairs prognostic model developed in the current study can help assess breast cancer prognosis and provides a potential target and research direction for breast cancer immunotherapy in the future.


Author(s):  
Xianghong Zhou ◽  
Shi Qiu ◽  
Di Jin ◽  
Kun Jin ◽  
Xiaonan Zheng ◽  
...  

Abstract Background: Papillary renal carcinoma (PRCC) is one of the important subtypes of kidney cancer, with a high degree of heterogeneity. At present, there is still a lack of robust and accurate biomarkers for the diagnosis, prognosis and treatment selection of PRCC. Considering the important role of tumor immunity in PRCC, we aim to construct a signature based on immune-related gene pairs (IRGPs) to estimate the prognostic of patients with PRCC.Methods: We obtained gene expression profiling and clinical information of patients with PRCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), which were divided into discovery and validation cohorts, respectively. The immune-related genes in the samples were used to construct gene pairs, and the immune-related genes pairs (IRGPs) with robust impact for overall survival (OS) were screened out to construct the signature by univariate analysis, multivariate Cox analysis, and least absolute shrinkage and selection operator (Lasso) analysis. Then we verified the prognostic role of the signature, and assessed the relationship between this signature with tumor immune infiltration and functional pathways.Results: A total of 315 patients were included in our study, and divided to discovery (n=287) and validation (n=28) cohorts. Finally, we selected 14 IRGPs with a panel of 22 unique genes to construct the prognostic signature. According to the signature, we stratified patients into high-risk group and low-risk group. In both discovery and validation cohorts, the results of Kaplan-Meier analysis showed that there were significant differences in OS between the two groups (p<0.001). Combined with multiple clinical pathological factors, the results of multivariate analyses confirmed that this signature was an independent predictor of OS (HR, 3.548; 95%CI, 2.096−6.006; p<0.001). The results of immune infiltration analysis demonstrated that the abundance of multiple tumor-infiltration lymphocytes such as CD8+ T cells, Tregs, and T follicular cell helper were significantly higher in the high-risk group. Functional analysis showed that multiple immune-related signaling pathways were enriched in the high-risk group.Conclusions: We successfully established an individualized prognostic immune-related gene pairs signature, which can accurately and independently predict the OS of patients with PRCC.


2021 ◽  
Author(s):  
Tianwei Sun ◽  
Qixing Tan ◽  
Changyuan Wei

Abstract Background: Breast cancer (BC) is the cancer with the largest number of deaths in women. There is growing evidence that immunity plays an important role in the prognosis of breast cancer. Methods: In this study, we developed and validated an immune-related gene pair signature (IRGPs) to predict the survival of breast cancer patients. Screening immune-related genes from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database for the construction of IRGPs, and patients with breast cancer in these two cohorts were assigned to low- and high- risk subgroups. Additionally, we used Kaplan-Meier survival analysis, univariate and multivariate Cox analysis to investigate IRGPs and their individualized prognostic characteristics, and analysis of immune cell infiltration in breast cancer. Results: A 47-IRGP signature was constructed from 2498 immune genes, which could significantly predict the overall survival (OS) of breast cancer patients in the TCGA and GEO cohorts. Immune infiltration analysis showed that a variety of immune cells are significantly related to the prognostic effects of IRGP characteristics in breast cancer patients, especially CD8+ T cells and macrophages. Conclusions: The IRGP signature constructed in this study can help determine the prognosis of breast cancer and provide new ideas and basis for future research on the role of immune-related genes in breast cancer patients.


2019 ◽  
Vol 20 (1) ◽  
pp. 151 ◽  
Author(s):  
Qingxia Yang ◽  
Yunxia Wang ◽  
Song Zhang ◽  
Jing Tang ◽  
Fengcheng Li ◽  
...  

Pituitary adenoma (PA) is prevalent in the general population. Due to its severe complications and aggressive infiltration into the surrounding brain structure, the effective management of PA is required. Till now, no drug has been approved for treating non-functional PA, and the removal of cancerous cells from the pituitary is still under experimental investigation. Due to its superior specificity and safety profile, immunotherapy stands as one of the most promising strategies for dealing with PA refractory to the standard treatment, and various studies have been carried out to discover immune-related gene markers as target candidates. However, the lists of gene markers identified among different studies are reported to be highly inconsistent because of the greatly limited number of samples analyzed in each study. It is thus essential to substantially enlarge the sample size and comprehensively assess the robustness of the identified immune-related gene markers. Herein, a novel strategy of direct data integration (DDI) was proposed to combine available PA microarray datasets, which significantly enlarged the sample size. First, the robustness of the gene markers identified by DDI strategy was found to be substantially enhanced compared with that of previous studies. Then, the DDI of all reported PA-related microarray datasets were conducted to achieve a comprehensive identification of PA gene markers, and 66 immune-related genes were discovered as target candidates for PA immunotherapy. Finally, based on the analysis of human protein–protein interaction network, some promising target candidates (GAL, LMO4, STAT3, PD-L1, TGFB and TGFBR3) were proposed for PA immunotherapy. The strategy proposed together with the immune-related markers identified in this study provided a useful guidance for the development of novel immunotherapy for PA.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lin Chen ◽  
Yuxiang Dong ◽  
Yitong Pan ◽  
Yuhan Zhang ◽  
Ping Liu ◽  
...  

Abstract Background Breast cancer is one of the main malignant tumors that threaten the lives of women, which has received more and more clinical attention worldwide. There are increasing evidences showing that the immune micro-environment of breast cancer (BC) seriously affects the clinical outcome. This study aims to explore the role of tumor immune genes in the prognosis of BC patients and construct an immune-related genes prognostic index. Methods The list of 2498 immune genes was obtained from ImmPort database. In addition, gene expression data and clinical characteristics data of BC patients were also obtained from the TCGA database. The prognostic correlation of the differential genes was analyzed through Survival package. Cox regression analysis was performed to analyze the prognostic effect of immune genes. According to the regression coefficients of prognostic immune genes in regression analysis, an immune risk scores model was established. Gene set enrichment analysis (GSEA) was performed to probe the biological correlation of immune gene scores. P < 0.05 was considered to be statistically significant. Results In total, 556 immune genes were differentially expressed between normal tissues and BC tissues (p < 0. 05). According to the univariate cox regression analysis, a total of 66 immune genes were statistically significant for survival risk, of which 30 were associated with overall survival (P < 0.05). Finally, a 15 immune genes risk scores model was established. All patients were divided into high- and low-groups. KM survival analysis revealed that high immune risk scores represented worse survival (p < 0.001). ROC curve indicated that the immune genes risk scores model had a good reliability in predicting prognosis (5-year OS, AUC = 0.752). The established risk model showed splendid AUC value in the validation dataset (3-year over survival (OS) AUC = 0.685, 5-year OS AUC = 0.717, P = 0.00048). Moreover, the immune risk signature was proved to be an independent prognostic factor for BC patients. Finally, it was found that 15 immune genes and risk scores had significant clinical correlations, and were involved in a variety of carcinogenic pathways. Conclusion In conclusion, our study provides a new perspective for the expression of immune genes in BC. The constructed model has potential value for the prognostic prediction of BC patients and may provide some references for the clinical precision immunotherapy of patients.


2021 ◽  
Vol 25 (6) ◽  
pp. 2918-2930
Author(s):  
Bao Zhang ◽  
Xiaocui Nie ◽  
Xinxin Miao ◽  
Shuo Wang ◽  
Jing Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rong-zhi Huang ◽  
Min Mao ◽  
Jie Zheng ◽  
Hai-qi Liang ◽  
Feng-ling Liu ◽  
...  

AbstractMelanoma is a skin cancer with great metastatic potential, which is responsible for the major deaths in skin cancer. Although the prognosis of melanoma patients has been improved with the comprehensive treatment, for patients with metastasis, the complexity and heterogeneity of diffuse diseases make prognosis prediction and systematic treatment difficult and ineffective. Therefore, we established a novel personalized immune-related gene pairs index (IRGPI) to predict the prognosis of patients with metastatic melanoma, which was conducive to provide new insights into clinical decision-making and prognostic monitoring for metastatic melanoma. Through complex analysis and filtering, we identified 24 immune-related gene pairs to build the model and obtained the optimal cut-off value from receiver operating characteristic curves, which divided the patients into high and low immune-risk groups. Meantime, the Kaplan–Meier analysis, Cox regression analysis and subgroup analysis showed that IRGPI had excellent prognostic value. Furthermore, IRGPI was shown that was closely associated with immune system in the subsequent tumor microenvironment analysis and gene set enrichment analysis. In addition, we broken through the data processing limitations of traditional researches in different platforms through the application of gene pairs, which would provide great credibility for our model. We believe that our research would provide a new perspective for clinical decision-making and prognostic monitoring in metastatic melanoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunlei Wu ◽  
Quanteng Hu ◽  
Dehua Ma

AbstractLung adenocarcinoma (LUAD) is the main pathological subtype of Non-small cell lung cancer. We downloaded the gene expression profile and immune-related gene set from the TCGA and ImmPort database, respectively, to establish immune-related gene pairs (IRGPs). Then, IRGPs were subjected to univariate Cox regression analysis, LASSO regression analysis, and multivariable Cox regression analysis to screen and develop an IRGPs signature. The receiver operating characteristic curve (ROC) was applied for evaluating the predicting accuracy of this signature by calculating the area under ROC (AUC) and data from the GEO set was used to validate this signature. The relationship of 22 tumor-infiltrating immune cells (TIICs) to the immune risk score was also investigated. An IRGPs signature with 8 IRGPs was constructed. The AUC for 1- and 3-year overall survival in the TCGA set was 0.867 and 0.870, respectively. Similar results were observed in the AUCs of GEO set 1, 2 and 3 (GEO set 1 [1-year: 0.819; 3-year: 0.803]; GEO set 2 [1-year: 0.834; 3-year: 0.870]; GEO set 3 [1-year: 0.955; 3-year: 0.827]). Survival analysis demonstrated high-risk LUAD patients exhibited poorer prognosis. The multivariable Cox regression indicated that the risk score was an independent prognostic factor. The immune risk score was highly associated with several TIICs (Plasma cells, memory B cells, resting memory CD4 T cells, and activated NK cells). We developed a novel IRGPs signature for predicting 1- and 3- year overall survival in LUAD, which would be helpful for prognosis assessment of LUAD.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15565-e15565
Author(s):  
Qiqi Zhu ◽  
Du Cai ◽  
Wei Wang ◽  
Min-Er Zhong ◽  
Dejun Fan ◽  
...  

e15565 Background: Few robust predictive biomarkers have been applied in clinical practice due to the heterogeneity of metastatic colorectal cancer (mCRC) . Using the gene pair method, the absolute expression value of genes can be converted into the relative order of genes, which can minimize the influence of the sequencing platform difference and batch effects, and improve the robustness of the model. The main objective of this study was to establish an immune-related gene pairs signature (IRGPs) and evaluate the impact of the IRGPs in predicting the prognosis in mCRC. Methods: A total of 205 mCRC patients containing overall survival (OS) information from the training cohort ( n = 119) and validation cohort ( n = 86) were enrolled in this study. LASSO algorithm was used to select prognosis related gene pairs. Univariate and multivariate analyses were used to validate the prognostic value of the IRGPs. Gene sets enrichment analysis (GSEA) and immune infiltration analysis were used to explore the underlying biological mechanism. Results: An IRGPs signature containing 22 gene pairs was constructed, which could significantly separate patients of the training cohort ( n = 119) and validation cohort ( n = 86) into the low-risk and high-risk group with different outcomes. Multivariate analysis with clinical factors confirmed the independent prognostic value of IRGPs that higher IRGPs was associated with worse prognosis (training cohort: hazard ratio (HR) = 10.54[4.99-22.32], P < 0.001; validation cohort: HR = 3.53[1.24-10.08], P = 0.012). GSEA showed that several metastasis and immune-related pathway including angiogenesis, TGF-β-signaling, epithelial-mesenchymal transition and inflammatory response were enriched in the high-risk group. Through further analysis of the immune factors, we found that the proportions of CD4+ memory T cell, regulatory T cell, and Myeloid dendritic cell were significantly higher in the low-risk group, while the infiltrations of the Macrophage (M0) and Neutrophil were significantly higher in the high-risk group. Conclusions: The IRGPs signature could predict the prognosis of mCRC patients. Further prospective validations are needed to confirm the clinical utility of IRGPs in the treatment decision.


Sign in / Sign up

Export Citation Format

Share Document