Isolation of Human Oral Keratinocyte Progenitor/Stem Cells

2007 ◽  
Vol 86 (4) ◽  
pp. 341-346 ◽  
Author(s):  
K. Izumi ◽  
T. Tobita ◽  
S.E. Feinberg

Progenitor/stem cell populations of epithelium are known to reside in the small-sized cell population. Our objective was to physically isolate and characterize an oral keratinocyte-enriched population of small-sized progenitor/stem cells. Primary human oral mucosal keratinocytes cultured in a chemically defined serum-free culture system, devoid of animal-derived feeder cells, were sorted by relative cell size and characterized by immunolabeling for β1 integrin, nuclear transcription factor, peroxisome proliferator-activated receptor-gamma, and cell-cycle analysis. Sorted cells were distinguished as progenitor/stem cells by functional assays and their ability to regenerate an oral mucosal graft. Small-sized cells demonstrated the lowest expression of peroxisome proliferator-activated receptor-gamma, the highest colony-forming efficiency, a longer long-term proliferative potential, an enriched quiescent cell population, and the ability to regenerate an oral mucosal graft, implying that the small-sized cultured oral keratinocytes contained an enriched population of progenitor/stem cells.

2009 ◽  
Vol 88 (12) ◽  
pp. 1113-1118 ◽  
Author(s):  
K. Izumi ◽  
K. Inoki ◽  
Y. Fujimori ◽  
C.L. Marcelo ◽  
S.E. Feinberg

Oral mucosa progenitor/stem cells reside as a small-sized cell population that eventually differentiates concurrently with an increase in cell size. Activation of the mammalian target of rapamycin (mTOR) leads to an increase in cell size. We hypothesized that rapamycin, a specific inhibitor of mTOR, will maintain primary human oral keratinocytes as a small-sized, undifferentiated cell population capable of retaining their proliferative capacity. Primary, rapamycin-treated (2 nM, 20 nM) oral keratinocytes showed a diminished cell size that correlated with a higher clonogenicity, a longer-term proliferative potential, and a slower cycling cell population concurrent with decreased expression of a differentiation marker when compared with untreated cells. Only the 2-nM rapamycin-treated oral keratinocytes maintained their ability to regenerate oral mucosa in vitro after 15 weeks of culture. Rapamycin, a Food and Drug Administration-approved drug, may have applicability for use in creating a highly proliferative cell population for use in regenerative medicine.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Nathan Moore ◽  
Stephen Lyle

Long-lived cancer stem cells (CSCs) with indefinite proliferative potential have been identified in multiple epithelial cancer types. These cells are likely derived from transformed adult stem cells and are thought to share many characteristics with their parental population, including a quiescent slow-cycling phenotype. Various label-retaining techniques have been used to identify normal slow cycling adult stem cell populations and offer a unique methodology to functionally identify and isolate cancer stem cells. The quiescent nature of CSCs represents an inherent mechanism that at least partially explains chemotherapy resistance and recurrence in posttherapy cancer patients. Isolating and understanding the cell cycle regulatory mechanisms of quiescent cancer cells will be a key component to creation of future therapies that better target CSCs and totally eradicate tumors. Here we review the evidence for quiescent CSC populations and explore potential cell cycle regulators that may serve as future targets for elimination of these cells.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


2017 ◽  
Vol 17 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Flavia Bittencourt Brasil ◽  
Luiz Henrique Amarante ◽  
Marcos Roberto de Oliveira

Abstract Objectives: describing the effects of maternal supplementation with folic acid (FA) exclusively during gestation on offspring's liver at later stages in life. Supplementation with FA during gestation has been recommended by the medical society worldwide. The liver has a central role on the substances of metabolism and homeostasis and some studies have shown that a high intake of FA at other periods in life may cause hepatic damage. Methods: a systematic review through which the following databases were consulted: Medline, through platforms of Pubmed, Lilacs and Scielo. The research was performed by keywords such as: "Folic acid", "Gestation", "Rat", "Offspring" and "Liver". Articles which evaluate the effect of FA consumption during both gestation and lactation were excluded. Results: FA consumption avoids disorders on expression of peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GccR), its lack did not change enzyme activity of the male offspring's liver in adulthood. Supplementation with FA during gestation did not change iron hepatic levels or lipid composition, but had an antioxidant effect on it. Conclusions: supplementation with FA at recommended doses did not cause toxic effects and is very likely to avoid deleterious effects in the liver of the offspring regarding the epigenetic level.


Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3266-3276 ◽  
Author(s):  
Kim Ravnskjaer ◽  
Michael Boergesen ◽  
Blanca Rubi ◽  
Jan K. Larsen ◽  
Tina Nielsen ◽  
...  

Abstract Fatty acids (FAs) are known to be important regulators of insulin secretion from pancreatic β-cells. FA-coenzyme A esters have been shown to directly stimulate the secretion process, whereas long-term exposure of β-cells to FAs compromises glucose-stimulated insulin secretion (GSIS) by mechanisms unknown to date. It has been speculated that some of these long-term effects are mediated by members of the peroxisome proliferator-activated receptor (PPAR) family via an induction of uncoupling protein-2 (UCP2). In this study we show that adenoviral coexpression of PPARα and retinoid X receptor α (RXRα) in INS-1E β-cells synergistically and in a dose- and ligand-dependent manner increases the expression of known PPARα target genes and enhances FA uptake and β-oxidation. In contrast, ectopic expression of PPARγ/RXRα increases FA uptake and deposition as triacylglycerides. Although the expression of PPARα/RXRα leads to the induction of UCP2 mRNA and protein, this is not accompanied by reduced hyperpolarization of the mitochondrial membrane, indicating that under these conditions, increased UCP2 expression is insufficient for dissipation of the mitochondrial proton gradient. Importantly, whereas expression of PPARγ/RXRα attenuates GSIS, the expression of PPARα/RXRα potentiates GSIS in rat islets and INS-1E cells without affecting the mitochondrial membrane potential. These results show a strong subtype specificity of the two PPAR subtypes α and γ on lipid partitioning and insulin secretion when systematically compared in a β-cell context.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4102-4109 ◽  
Author(s):  
CI Civin ◽  
G Almeida-Porada ◽  
MJ Lee ◽  
J Olweus ◽  
LW Terstappen ◽  
...  

Abstract Data from many laboratory and clinical investigations indicate that CD34+ cells comprise approximately 1% of human bone marrow (BM) mononuclear cells, including the progenitor cells of all the lymphohematopoietic lineages and lymphohematopoietic stem cells (stem cells). Because stem cells are an important but rare cell type in the CD34+ cell population, investigators have subdivided the CD34+ cell population to further enrich stem cells. The CD34+/CD38-cell subset comprises less than 10% of human CD34+ adult BM cells (equivalent to < 0.1% of marrow mononuclear cells), lacks lineage (lin) antigens, contains cells with in vitro replating capacity, and is predicted to be highly enriched for stem cells. The present investigation tested whether the CD34+/CD38-subset of adult human marrow generates human hematopoiesis after transfer to preimmune fetal sheep. CD34+/ CD38- cells purified from marrow using immunomagnetic microspheres or fluorescence-activated cell sorting generated easily detectable, long- term, multilineage human hematopoiesis in the human-fetal sheep in vivo model. In contrast, transfer of CD34+/CD38+ cells to preimmune fetal sheep generated only short-term human hematopoiesis, possibly suggesting that the CD34+/CD38+ cell population contains relatively early multipotent hematopoletic progenitor cells, but not stem cells. This work extends the prior in vitro evidence that the earliest cells in fetal and adult human marrow lack CD38 expression. In summary, the CD34+/ CD38-cell population has a high capacity for long-term multilineage hematopoietic engraftment, suggesting the presence of stem cells in this minor adult human marrow cell subset.


2019 ◽  
Vol 20 (22) ◽  
pp. 5589
Author(s):  
Jaeim Lee ◽  
Ok-Hee Kim ◽  
Sang Chul Lee ◽  
Kee-Hwan Kim ◽  
Jin Sun Shin ◽  
...  

Peroxisome proliferator activated receptor λ coactivator 1α (PGC-1α) is a potent regulator of mitochondrial biogenesis and energy metabolism. In this study, we investigated the therapeutic potential of the secretome released from the adipose-derived stem cells (ASCs) transfected with PGC-1α (PGC-secretome). We first generated PGC-1α-overexpressing ASCs by transfecting ASCs with the plasmids harboring the gene encoding PGC-1α. Secretory materials released from PGC-1α-overexpressing ASCs were collected and their therapeutic potential was determined using in vitro (thioacetamide (TAA)-treated AML12 cells) and in vivo (70% partial hepatectomized mice) models of liver injury. In the TAA-treated AML12 cells, the PGC-secretome significantly increased cell viability, promoted expression of proliferation-related markers, such as PCNA and p-STAT, and significantly reduced the levels of reactive oxygen species (ROS). In the mice, PGC-secretome injections significantly increased liver tissue expression of proliferation-related markers more than normal secretome injections did (p < 0.05). We demonstrated that the PGC-secretome does not only have higher antioxidant and anti-inflammatory properties, but also has the potential of significantly enhancing liver regeneration in both in vivo and in vitro models of liver injury. Thus, reinforcing the mitochondrial antioxidant potential by transfecting ASCs with PGC-1α could be one of the effective strategies to enhance the therapeutic potential of ASCs.


Sign in / Sign up

Export Citation Format

Share Document