scholarly journals Mechanical and Thermal Properties of Kenaf Fiber Reinforced Polypropylene/Magnesium Hydroxide Composites

2017 ◽  
Vol 12 (2) ◽  
pp. 155892501701200 ◽  
Author(s):  
C. H. Lee ◽  
S. M. Sapuan ◽  
M. R. Hassan

This paper presents a study of the mechanical and thermal properties of kenaf fiber (KF) reinforced polypropylene (PP)/magnesium hydroxide (MH) composites. Pure PP samples show low tensile, flexural and flame retardant properties. It was found that KF and MH filler insertion improved the properties of PP composites. The incremental addition of KF fiber between 0 and 20 weight percent in composites results in higher tensile modulus and decomposed mass loss at onset temperature, but lower tensile strength, elongation, flexural strength and onset temperature. Addition of 25 wt% KF produces slightly higher flexural strength. Increasing the volume of MH filler in the composites caused lower strength, tensile modulus and elongation, but higher onset temperature and 2nd peak temperature in thermogravimetric analysis (TGA) testing. Increasing the KF content in the PP matrix resulted in lower mass residue. Increasing the KF content in composites containing MH increased the mass residue at the end of the testing.

2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000492-000497
Author(s):  
Kostja Makarovič ◽  
Anton Meden ◽  
Marko Hrovat ◽  
Janez Holc ◽  
Andreja Benčan ◽  
...  

Low-temperature co-fired ceramic (LTCC) is an important material in the production of ceramic multilayer structures. Large and complex multilayer structures are usually fired at higher temperatures and/or longer firing times compared to the relatively thin LTCC tapes. The firing conditions of LTCC determine the phase composition and the microstructure, which both influence the physical characteristics, such as the mechanical and thermal properties. In this work the effect of the phase composition on the biaxial flexural strength and the temperature coefficient of expansion of the DuPont 951 LTCC is presented. The samples were fired at different temperatures and times to obtain different phase compositions. The phase composition, especially the mass fraction of anorthite, was correlated with the biaxial flexural strength and the thermal coefficient of expansion (TCE). A very long firing time, i.e., 100h at 800 °C, yields, apart from crystalline anorthite, the cristobalite phase. The anorthite that crystalizes from the glass phase in a dense LTCC material changes the crack-propagation mechanism and improves the biaxial flexural strength of the material. The major change in the biaxial flexural strength is observed when the anorthite phase appeared. The increasing mass fraction of anorthite does improve the biaxial flexural strength less drastically. With the increasing mass fraction of the anorthite, decreases of the TCE of the material and a small decrease of the density of the LTCC material occur.


2018 ◽  
Vol 149 ◽  
pp. 01076
Author(s):  
Guendouz Mohamed ◽  
Boukhelkhal Djamila

Over the past twenty years, the rubber wastes are an important part of municipal solid waste. This work focuses on the recycling of rubber waste, specifically rubber waste of used shoes discharged into the nature and added in the mass of crushed sand concrete with percentage (10%, 20%, 30% and 40%). The physical (workability, fresh density), mechanical (compressive and flexural strength) and thermal (thermal conductivity) of different crushed sand concrete made are analyzed and compared to the respective controls. The use of rubber waste in crushed sand concrete contributes to reduce the bulk density and performance of sand concrete. Nevertheless, the use of rubber aggregate leads to a significant reduction in thermal conductivity, which improves the thermal insulation of crushed sand concrete.


Author(s):  
Yuanxin Zhou ◽  
Mohammad Monirul Hasan ◽  
Shaik Jeelani

In the present study, effect of vapor grown carbon nanofiber on the mechanical and thermal properties of polypropylene was investigated. Firstly, nanofibers were dry-mixed with polypropylene powder and extruded into filaments by using a single screw extruder. Then the tensile tests were performed on the single filament at the strain rate range from 0.02/min to 2/min. Experiments results show that both neat and nano-phased polypropylene were strain rate strengthening material. The tensile modulus and yield strength both increased with increasing strain rate. Experimental results also show that infusing nanofiber into polypropylene can increase tensile modulus and yield strength, but decrease the failure strain. At the same time, thermal properties of neat and nano-phased polypropylene were characterized by TGA. TGA results have showed that the nanophased system is more thermally stable. At last, a nonlinear constitutive equation has been developed to describe strain rate sensitive behavior of neat and nano-phased polypropylene.


2019 ◽  
Vol 821 ◽  
pp. 435-439
Author(s):  
Bo Li ◽  
Ke Jing ◽  
Hai Bo Bian

Low temperature sintered MgO-Al2O3-SiO2 glass-ceramic with high mechanical and low thermal expansion was prepared for package. The remarkable influence of B2O3 addition on the electrical, mechanical, and thermal properties was fully investigated. A small amount of B2O3 promoted the sintering process and improved the densification of MAS. The kinetics via Kissinger method indicated that an appropriate B2O3 content decreased the activation energy and helped the occurrence of crystallization. Due to the increase of crystallinity and indialite phase, B2O3 addition significantly enhanced flexural strength and Young’s modulus. MAS doped with 3wt% B2O3 can be sintered at 900 °C and obtained good properties: σ = 229 MPa, φ = 86 GPa, α = 1.66×10-6 /°C, εr = 5.29, and tanδ = 5.9×10-4.


2021 ◽  
Vol 887 ◽  
pp. 399-405
Author(s):  
L.N. Shafigullin ◽  
N.V. Romanova ◽  
G.R. Shafigullina

The paper shows the applicability of expandable graphite METOPAC EG 350-50 (80) in a rigid PU foam system as a substance that reduces the flammability (flame retardant) and improves the usability. The studies of the physical mechanical and thermal properties of PU foam with a higher graphite content revealed a higher normal sound absorption coefficient; insignificant influence on the thermal conductivity; a higher decomposition onset temperature; more difficult ignition. PU foam sample with a ratio of 15 graphite weight fractions to 100 polyol weight fractions has the highest physical mechanical and thermal properties, and, as compared to the starting PU foam, it features an increase in normal sound absorption coefficient by an average of 3 times; a decrease in the thermal conductivity by 8 %; an increase in the decomposition onset temperature by 6.7 °С. Therefore, the modification of PU foam with expandable graphite makes it possible not only to develop hardly combustible polyurethanes but also to improve its physical mechanical and thermal properties.


2005 ◽  
Vol 486-487 ◽  
pp. 181-184 ◽  
Author(s):  
Dae Ho Choi ◽  
Byung Kyu Moon ◽  
Rak Joo Sung ◽  
Seung Ho Kim ◽  
Koichi Niihara

Mechanical and thermal properties of Si3N4 ceramics with various rare-earth oxides (La2O3, CeO2, Lu2O3, Dy2O3, Sm2O3, Nd2O3, Yb2O3, and RuO2) were investigated. Flexural strength of silicon nitride with addition of 5vol% Nd2O3, CeO2, Dy2O3, and Sm2O3 showed higher value than that of silicon nitride with Lu2O3 and La2O3 added because they form denser microstructure and smaller elongated grain. Thermal conductivity of silicon nitride with an addition of 5vol% RuO2 was more enhanced than that of silicon nitride added with Nd2O3, Sm2O3, and Dy2O3 because the addition of RuO2 depressed grain growth. It is also associated with lattice oxygen governing thermal conductivity of Si3N4 when added rare-earth oxides.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1171
Author(s):  
Nurul Haziatul Ain Norhasnan ◽  
Mohamad Zaki Hassan ◽  
Ariff Farhan Mohd Nor ◽  
S. A. Zaki ◽  
Rozzeta Dolah ◽  
...  

Utilizing agro-waste material such as rice husk (RH) and coco peat (CP) reinforced with thermoplastic resin to produce low-cost green composites is a fascinating discovery. In this study, the effectiveness of these blended biocomposites was evaluated for their physical, mechanical, and thermal properties. Initially, the samples were fabricated by using a combination of melt blend internal mixer and injection molding techniques. Increasing in RH content increased the coupons density. However, it reduced the water vapor kinetics sorption of the biocomposite. Moisture absorption studies disclosed that water uptake was significantly increased with the increase of coco peat (CP) filler. It showed that the mechanical properties, including tensile modulus, flexural modulus, and impact strength of the 15% RH—5% CP reinforced acrylonitrile-butadiene-styrene (ABS), gave the highest value. Results also revealed that all RH/CP filled composites exhibited a brittle fracture manner. Observation on the tensile morphology surfaces by using a scanning electron microscope (SEM) affirmed the above finding to be satisfactory. Therefore, it can be concluded that blend-agriculture waste reinforced ABS biocomposite can be exploited as a biodegradable material for short life engineering application where good mechanical and thermal properties are paramount.


RSC Advances ◽  
2020 ◽  
Vol 10 (53) ◽  
pp. 32156-32161
Author(s):  
Guangyu Zhang ◽  
Xiaoqi Lin ◽  
Qinqin Zhang ◽  
Kaisen Jiang ◽  
Weisheng Chen ◽  
...  

Bio-based rigid polyurethane foams with the addition of flame retardant exhibit preferable flame-retardant properties.


2017 ◽  
Vol 22 (2) ◽  
pp. 785-793 ◽  
Author(s):  
Armel B. Laibi ◽  
Philippe Poullain ◽  
Nordine Leklou ◽  
Moussa Gomina ◽  
Dominique K. C. Sohounhloué

2019 ◽  
Vol 7 (4.14) ◽  
pp. 361
Author(s):  
E. Z. Engku Zawawi ◽  
A. Z. Romli ◽  
S. F. Mat Suli ◽  
M. Amirrudin Isnin

In this study, the polymer blends were prepared in the ratios of Polypropylene (PP) to Polylactic acid (PLA) of 70:30 by weight. Maleic anhydride-grafted polypropylene (MAPP) was used as a coupling agent to improve the compatibility between PP and PLA. The MAPP was added into the blend in the ratio of 0, 3, 6 and 9% wt. The polymer blends were prepared by extrusion process using twin screw extruder. The effects of MAPP content on the mechanical and thermal properties of PP/PLA blend were investigated. The result of tensile strength shows no significant increased with the addition of MAPP content. However, Young modulus and Izod impact strength shows significantly increased with the addition of MAPP content. Tensile modulus increased up to 43% with the addition of 6% wt. MAPP. TGA results show that blending PP with PLA cause increased the thermal stability of PLA. The incorporation of 6 % MAPP has shifted the initial weight loss of PP component towards lower temperature.  


Sign in / Sign up

Export Citation Format

Share Document