scholarly journals An assessment of aesthetics and comfort for women’s apparel products in terms of pattern design parameters

2019 ◽  
Vol 14 ◽  
pp. 155892501984669
Author(s):  
Yu Zhao ◽  
Jing Song ◽  
Qiuyu Yu ◽  
Yu Mo ◽  
Zhen Liu ◽  
...  

The proper assessment of aesthetics and comfort is an important step before launching a new type of apparel. Most current works on this assessment are qualitative and hard to be applied in practical to improve apparel design. In this study, we proposed two quantitative mappings from pattern design parameters to degree of aesthetics and pattern design parameters to degree of comfort for assessing aesthetics and comfort of apparel, and particularly, women’s pants have been investigated. Statistical analysis was employed in the mappings’ development. An experiment was conducted as a validation for the mappings. Two major conclusions are drawn from this study. The first is that these mappings enable to extract a more advanced pattern for apparel design after the iterative pattern revision. The second is that these mappings are able to be digitalized and then the traditional method of observing feedbacks of aesthetics and comfort for an apparel product can be updated into a more efficient and low-cost one.

Author(s):  
P.Venu Gopala Rao ◽  
Eslavath Raja ◽  
Ramakrishna Gandi ◽  
G. Ravi Kumar

IoT (Internet of Things) has become most significant area of research to design an efficient data enabled services with the help of sensors. In this paper, a low-cost system design for e-healthcare service to process the sensitive health data is presented. Vital signs of the human body are measured from the patient location and shared with a registered medical professional for consultation. Temperature and heart rate are the major signals obtained from a patient for the initial build of the system. Data is sent to a cloud server where processing and analysis is provided for the medical professional to analyze. Secure transmission and dissemination of data through the cloud server is provided with an authentication system and the patient could be able to track his data through a smart phone on connecting to the cloud server. A prototype of the system along with its design parameters has been discussed.


2011 ◽  
Vol 71-78 ◽  
pp. 4634-4637
Author(s):  
Tian Lin Cui ◽  
Jing Kun Pi ◽  
Yong Hui Liu ◽  
Zhen Hua He

In order to optimize the design of flexible pressurized anchor, this paper gives a further analysis on structural features of the new type of flexible pressurized anchor and carries out a contact analysis on anchor system by using the finite element method. It calculates as well as researches the contact stress relation of interactional anchor rod and surrounding rock under the circumstance of anchoring, obtaining the law of all major design parameters of anchor rod structure and pressure from surrounding rock influencing the anchoring performance and arriving at the conclusion that the anchor rod is adapted to various conditions of surrounding rock. They not only serve as important references for optimized design and application of anchor rod, but also provide a basis for the experiment of new type of anchor rod.


Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
Shengjie Wang ◽  
Kun Wang ◽  
Chunsong Zhang ◽  
Jian S Dai

Abstract A kinetostatic approach applied to the design of a backflip strategy for quadruped robots is proposed in this paper. Inspired by legged animals and taking the advantage of the leg workspace, this strategy provides an optimal design idea for the low-cost quadruped robots to achieve self-recovery after overturning. Through kinetostatic and energy analysis, a four-stepped backflip strategy based on the selected rotation axis with minimum energy is proposed, with a process of selection, lifting, rotating, and protection. The kinematic factors that affect the backflip are investigated, along with the relationship between the design parameters of the leg and trunk being analyzed. At the end of this paper, the strategy is validated by a simulation and experiments with a prototype called DRbot, demonstrating that the strategy endows the robot a strong self-recovery ability in various terrains.


2015 ◽  
Vol 5 (2) ◽  
pp. 114
Author(s):  
Chiu-Fan Hsieh ◽  
You-Qing Zhu

<p class="1Body">This study analyzes the influence of design parameters on the dynamics of straight bevel gears by constructing a model that allows variation in the shaft angle, pressure angle, and backlash. According to the statistical analysis, the order of influence of these parameters on weight is shaft angle &gt; pressure angle &gt; backlash. When the shaft angle is 90°, the statistical results show the drive is stable and the stress fluctuation level is low. The pressure angle, on the other hand, can affect the gear’s dynamic property by influencing the driving component force on the gear and the component force on the shaft. The results for the shaft and pressure angles are used to determine the appropriate backlash. Overall, the analysis not only provides designers with an important reference but explains the dominance in the market of gear designs with a 90° shaft angle and a 20° pressure angle.</p>


Author(s):  
Shih-Ming Wang ◽  
Chih-Peng Yang ◽  
Zhe-Zhi Ye ◽  
Chuntai Yen

The products of 3C, bioscience, medical industry, and aerospace industry are becoming smaller and smaller. The components of the products are made of various materials with complex 3D shapes requiring high accuracy in their dimensions and contours. An accurate micro-/meso-scale CNC machine tool is an essential part of this technology. A new type of CNC micro machine tool with a toggle-like mechanism having the characteristics of low-cost and fine-resolution was developed. With geometric reduction principle, the machine can provide finer feed resolution and better positioning accuracy without using high-end driving components and controller. The kinematics model and characteristics of the machine were derived and analyzed. Modal analysis and dynamic compliance analysis were employed to design a light-weight structure with good stiffness. The accuracy calibration results showed the machine can reach a positioning accuracy of 500 nm. Prototype of the machine was built, and furthermore some micro machining examples were demonstrated in this paper.


Author(s):  
Tingting Wei ◽  
Dengji Zhou ◽  
Jinwei Chen ◽  
Yaoxin Cui ◽  
Huisheng Zhang

Since the late 1930s, gas turbine has begun to develop rapidly. To improve the economic and safety of gas turbine, new types were generated frequently by Original Equipment Manufacture (OEM). In this paper, a hybrid GRA-SVM prediction model is established to predict the main design parameters of new type gas turbines, based on the combination of Grey Relational Analysis (GRA) and Support Vector Machine (SVM). The parameters are classified into two types, system performance parameters reflecting market demands and technology development, and component performance parameters reflecting technology development and coupling connections. The regularity based on GRA determines the prediction order, then new type gas turbine parameters can be predicted with known system parameters. The model is verified by the application to SGT600. In this way, the evolution rule can be obtained with the development of gas turbine technology, and the improvement potential of several components can be predicted which will provide supports for overall performance design.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 419
Author(s):  
K Geetha ◽  
P Prabha ◽  
C Preetha Devi ◽  
S Priyadharshini ◽  
S Tamilselvan

Now a days, Industries are more equipped with automatic system. Fire monitoring is one of the applications where continuous monitoring of temperature and humidity is essential to detect the fire in the industry. Fire detection is very much necessary to protect both the industry and to conserve environment and livelihood of human. This paper presents an algorithm to detect the fire in the industry based on ZigBee and GPRS wireless sensor network which provides low cost, low maintenance and good quality service when compared with the traditional method. The hardware circuitry of proposed solution is based on microcontroller, temperature sensor along with ZigBee and GPRS modules.


2017 ◽  
Author(s):  
Trey W. Riddle ◽  
Jared W. Nelson ◽  
Douglas S. Cairns

Abstract. Given that wind turbine blades are such large structures, the use of low-cost composite manufacturing processes and materials has been necessary for the industry to be cost competitive. Since these manufacturing methods can lead to inclusion of unwanted defects, potentially reducing blade life, the Blade Reliability Collaborative tasked the Montana State University Composites Group with assessing the effects of these defects. Utilizing the results of characterization and mechanical testing studies, probabilistic models were developed to assess the reliability of a wind blade with known defects. As such, defects were found to best be assessed as design parameters in a parametric probabilistic analysis allowing for establishment of a consistent framework to validate categorization and analysis. Monte Carlo simulations were found to adequately describe the probability of failure of composite blades with included defects. By treating defects as random variables, the approaches utilized indicate the level of conservation used in blade design may be reduced when considering fatigue. In turn, safety factors may be reduced as some of the uncertainty surrounding blade failure is reduced when analysed with application specific data. Overall, the results indicate that characterization of defects and reduction of design uncertainty is possible for wind turbine blades.


1996 ◽  
Vol 445 ◽  
Author(s):  
W. Kowbel ◽  
V. Chellappa ◽  
J.C. Withers

AbstractRapid advances in high power electronics packaging require the development of new heat sink materials. Advanced composites designed to provide thermal expansion control as well as improved thermal conductivity have the potential to provide benefits in the removal of excess heat from electronic devices. Carbon-carbon (C-C) composits are under consideration for several military and space electronic applications including SEM-E electronic boxes. The high cost of C-C composits has greatly hindered their wide spread commercialization. A new manufacturing process has been developed to produce high thermal conductivity (over 400 W/mK) C-C composites at greatly reduced cost (less than $50/lb). This new material has potential applications as both a heat sink and a substrate. Dielectric coatings such as A1N and diamond were applied to this new type of heat sink material. Processing, as well as mechanical and thermal properties of this new class of heat sink material will be presented.


2011 ◽  
Vol 299-300 ◽  
pp. 936-939
Author(s):  
Li Xu ◽  
Liang Yang ◽  
Zhi Hui Shi

The multi-facet drill shows good performance during materials are difficultly machined. However, for a new type of the drilling point, the grinding has been the main problem that restricts its application. To properly grinding the drill point confirms the design parameters, the relationship between design parameters and grinding parameters must be resolved. The mathematical model is the key to solve this problem. In this paper, according to the design of the high manganese steel drilling tool, a mathematical model has been established by the plane grinding method to solve grinding parameters, and to achieve improved mechanical grinding of drill point.


Sign in / Sign up

Export Citation Format

Share Document