scholarly journals A comparative study of electrospun polyvinylidene fluoride and poly(vinylidenefluoride-co-trifluoroethylene) fiber webs: Mechanical properties, crystallinity, and piezoelectric properties

2020 ◽  
Vol 15 ◽  
pp. 155892502093929 ◽  
Author(s):  
Wenxin Zhang ◽  
Bilal Zaarour ◽  
Lei Zhu ◽  
Chen Huang ◽  
Bugao Xu ◽  
...  

Energy scavenging has been attracting the consideration of researchers in recent years. In this study, the fabrication and characterization of electrospun randomly oriented and aligned grooved polyvinylidene fluoride (PVDF) and poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) fiber webs are studied. The fibers are generated with comparable diameters and the webs which are used as an active layer to directly make a piezoelectric nanogenerator are fabricated with the same thickness for accurate comparison. The results show that PVDF-TrFE fiber webs have better mechanical properties, crystallinity, and piezoelectric properties than PVDF fiber webs. Furthermore, the piezoelectric nanogenerator based on PVDF-TrFE fiber webs has higher electrical outputs than piezoelectric nanogenerator based on PVDF fiber webs owing to its high β phase content (F(β)). Moreover, the electrical outputs of the piezoelectric nanogenerator based on aligned fiber webs are higher than those based on randomly oriented fiber webs due to the increase in the friction area. We believe that our work can be served as a good reference for the comparison between the mechanical, physicochemical, and piezoelectric properties of PVDF and PVDF-TrFE fiber webs generated via electrospinning.

2021 ◽  
Vol 897 ◽  
pp. 71-76
Author(s):  
Aliaa Essam ◽  
Ahmed H. El-Shazly ◽  
Hassan Shokry

The application of piezoelectric polyvinylidene fluoride (PVDF) has become of a great interest. Due to its piezoelectric properties, PVDF is used in various applications, namely, microdevices and sensors. Electrospinning was found to be the most suitable and efficient method to synthesis PVDF nanofibers. It is used to obtain PVDF nanofibers without additional mechanical stretching and with high β phase content. For these reasons, it is considered to be an economic technique. In the present paper, the parameters affecting the synthesis of PVDF nanofibers such as solution concentration, flow rate, voltage and Tip to Collector Distance (TCD), have been investigated. The optimum conditions were found to be 18% concentration, 15 cm TCD, 1 mL/h flowrate and 19 kV voltages. The fabricated nanofiber has been characterized using SEM, FTIR, XRD and a conductivity test.


2015 ◽  
Vol 1105 ◽  
pp. 51-55 ◽  
Author(s):  
K.M. Gupta ◽  
Kishor Kalauni

Bhimal fibres are quite a newer kind of bio-degradable fibres. They have never been heard before in literatures from the view point of their utility as engineering material. These fibres have been utilized for investigation of their properties. Characterization of this fibre is essential to determine its properties for further use as reinforcing fibre in polymeric, bio-degradable and other kinds of matrix. With this objective, the fabrication method and other mechanical properties of Bhimal-reinforced-PVA biocomposite have been discussed. The stress-strain curves and load-deflection characteristics are obtained. The tensile, compressive, flexure and impact strengths have been calculated. The results are shown in tables and graphs. The results obtained are compared with other existing natural fibre biocomposites. From the observations, it has been concluded that the tensile strength of Bhimal-reinforced-PVA biocomposite is higher than other natural fibre composites. Hence these can be used as reinforcement to produce much lighter weight biocomposites.


Vacuum ◽  
2016 ◽  
Vol 128 ◽  
pp. 230-233 ◽  
Author(s):  
Wei Li ◽  
Jia Meng ◽  
Ping Liu ◽  
Haoming Du ◽  
Ke Zhang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1549
Author(s):  
Qian Yang ◽  
Xi Wang ◽  
Xin Ding ◽  
Qiao Li

Textile temperature sensors are highly in demanded keep a real-time and accurate track of human body temperature for identification of healthy conditions or clinical diagnosis. Among various materials for textile temperature sensors, temperature-sensitive metal fibers have highest precision. However, those metal fibers are mechanically too weak, and break constantly during the weaving process. To enhance the mechanical strength of the metal fibers, this paper proposes to make wrapped metal fibers using wrapping technology, and characterize the effect of wrapped metal yarns on both mechanical properties and sensing behaviors. The wrapped yarns were woven into fabrics, forming the fabric temperature sensors. Results show that strength and maximum strain of the wrapped yarns are 2.69 and 1.82 times of pure Pt fibers. The response time of fabric temperature sensors using wrapped yarns was observed as 0.78 s and 1.1 s longer compared to that using Pt fibers when front and back sides contacted heat source, respectively. It is recommended that the wrapping method should be implemented for the protection of Pt fibers in fabric temperature sensors.


2016 ◽  
Vol 15 (05n06) ◽  
pp. 1660013
Author(s):  
Yammani Venkat Subba Rao ◽  
Aravinda Narayanan Raghavan ◽  
Meenakshi Viswanathan

The ability to create patterns of piezo responsive material on smooth substrate is an important method to develop efficient microfluidic mixers. This paper reports the fabrication of Poly vinylidene fluoride microfilms using spin-coating on smooth glass surface. The suitable crystalline phases, surface morphology and microstructural properties of the PVDF films have been investigated. We found that films of average thickness 10[Formula: see text][Formula: see text]m, had average roughness of 0.13[Formula: see text][Formula: see text]m. These PVDF films are useful in microfluidic mixer applications.


2020 ◽  
Author(s):  
Susilawati ◽  
Jantiber Siburian ◽  
Yuan Alfinsyah Sihombing ◽  
Bonar Ferdiansyah ◽  
Sri Ningsih Y. Pakpahan

Sign in / Sign up

Export Citation Format

Share Document