scholarly journals Resistive network model of the weft-knitted strain sensor with the plating stitch-Part 1: Resistive network model under static relaxation

2020 ◽  
Vol 15 ◽  
pp. 155892502094456
Author(s):  
Yujing Zhang ◽  
Hairu Long

The resistive network model of the weft-knitted strain sensor with the plating stitch under static relaxation is studied based on the knitted loop structure and circuit principle. The prepared sensors are divided into the sensing area and the non-sensing area. The former consists of the conductive face yarn and the insulated elastic ground yarn, while the latter includes the normal face yarn and the same ground yarn. The loop of conductive face yarn not only produces length-related resistance but also causes the jamming contact resistances along the width and length direction. Besides, the elastic ground yarn has a potential impact on the contact situation of the conductive face yarn at the interlocking point, determining whether the interlocking contact resistance exists. Therefore, two resistive network models have been established accordingly. In addition to the length-related resistance, the first model focused on both the jamming and interlocking contact resistances, while the second one only dealt with the jamming contact resistance. In the case of applying voltage along the two ends of the course, the theoretical calculations of the corresponding network models were performed using a series of equivalent transformations. Finally, the correctness and usability of the two models were verified through experiments and model calculations. It was found that both models can predict that the equivalent resistance increases with the conductive wale number and decreases with the conductive course number. It was implied that the first model’s calculating resistances are closer to the experimental data and lower than those of the second model. The difference in the calculating resistances of the two models would become smaller as the course number increases. Thus, the investigation indicates that the jamming contact resistance has a more considerable influence on the resistive network than the interlocking contact resistance.

2020 ◽  
Vol 15 ◽  
pp. 155892502096947
Author(s):  
Yujing Zhang ◽  
Hairu Long

Based on the static resistive network investigated in Part 1 of this series, the resistive network model of the weft-knitted strain sensor with the plating stitch is explored under the elongation along course direction, and it changes with the conductive loops’ configuration and contact situation. Since the voltage is applied at both ends of the course, under a specific stretching state, the resistive network model can be reduced to a resistance network connected in series in the course direction and parallel in the wale direction, which determines that the sensor’s equivalent resistance increases with the growth of the conductive wale number, and decreases with the raise of the conductive course number. Through experiment and model calculation, it can be obtained that in the initial stage of stretching, the contact resistances’ changes are the main factors affecting the mechanical–electrical performance of the sensor. Then as the sensor is further stretched, the length-related resistances of the conductive yarn segments begin to affect the sensor’s properties due to yarns’ slippage and self-elongation. In addition, the weft jacquard plating technology makes the strain of the sensor reach about 32% before yarns’ slippage and self-elongation, which expands the sensor’s measurable strain range, and avoids irreversible deformation of the sensor after repeated use in this range. It can be verified that the sensor’s gauge factor can be improved by reducing the conductive course number and increasing the conductive wale number. It should be noted that the ground yarn will reduce the gauge factor of the sensor during stretching, so it is necessary to choose a ground yarn with a smaller fineness than the conductive face yarn and good elasticity in practical.


Author(s):  
Johannes Ziske ◽  
Holger Neubert

In many cases, the accuracy of transient multi-domain network models can be improved by coupling to distributed models, e.g. finite-element (FE) models, which compute for specific element parameters, flow or potential variables of the network model. Two opposing methods are known. The first is direct simulator coupling. It requires solving of the distributed model in each iteration step of the network model simulation. The second is the uncoupled calculation of characteristic maps from stationary distributed models which are then used in the transient model in form of look-up tables. Since the course of the base parameters of the characteristic maps is unknown before the transient simulation runs the stationary distributed model has to be solved for all grid points of the spanned parameter space. Both methods lead to an inefficient high number of necessary calculations of the distributed model which usually determines the computing costs. We present a new approach which significantly reduces the number of necessary computations. The main idea is combining both methods and successively computing grid points of the characteristic maps depending on the current need while solving the transient model. This is demonstrated for the example of an electromagnetic actuator. In the presented example, the number of FE model calculations was reduced to a tenth.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1305
Author(s):  
Stefano Borocci ◽  
Felice Grandinetti ◽  
Nico Sanna

The structure, stability, and bonding character of fifteen (Ng-H-Ng)+ and (Ng-H-Ng')+ (Ng, Ng' = He-Xe) compounds were explored by theoretical calculations performed at the coupled cluster level of theory. The nature of the stabilizing interactions was, in particular, assayed using a method recently proposed by the authors to classify the chemical bonds involving the noble-gas atoms. The bond distances and dissociation energies of the investigated ions fall in rather large intervals, and follow regular periodic trends, clearly referable to the difference between the proton affinity (PA) of the various Ng and Ng'. These variations are nicely correlated with the bonding situation of the (Ng-H-Ng)+ and (Ng-H-Ng')+. The Ng-H and Ng'-H contacts range, in fact, between strong covalent bonds to weak, non-covalent interactions, and their regular variability clearly illustrates the peculiar capability of the noble gases to undergo interactions covering the entire spectrum of the chemical bond.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naomi A. Arnold ◽  
Raul J. Mondragón ◽  
Richard G. Clegg

AbstractDiscriminating between competing explanatory models as to which is more likely responsible for the growth of a network is a problem of fundamental importance for network science. The rules governing this growth are attributed to mechanisms such as preferential attachment and triangle closure, with a wealth of explanatory models based on these. These models are deliberately simple, commonly with the network growing according to a constant mechanism for its lifetime, to allow for analytical results. We use a likelihood-based framework on artificial data where the network model changes at a known point in time and demonstrate that we can recover the change point from analysis of the network. We then use real datasets and demonstrate how our framework can show the changing importance of network growth mechanisms over time.


2012 ◽  
Vol 26 (4) ◽  
pp. 444-445 ◽  
Author(s):  
Tobias Rothmund ◽  
Anna Baumert ◽  
Manfred Schmitt

We argue that replacing the trait model with the network model proposed in the target article would be immature for three reasons. (i) If properly specified and grounded in substantive theories, the classic state–trait model provides a flexible framework for the description and explanation of person × situation transactions. (ii) Without additional substantive theories, the network model cannot guide the identification of personality components. (iii) Without assumptions about psychological processes that account for causal links among personality components, the concept of equilibrium has merely descriptive value and lacks explanatory power. Copyright © 2012 John Wiley & Sons, Ltd.


2011 ◽  
Vol 105 (2) ◽  
pp. 757-778 ◽  
Author(s):  
Malte J. Rasch ◽  
Klaus Schuch ◽  
Nikos K. Logothetis ◽  
Wolfgang Maass

A major goal of computational neuroscience is the creation of computer models for cortical areas whose response to sensory stimuli resembles that of cortical areas in vivo in important aspects. It is seldom considered whether the simulated spiking activity is realistic (in a statistical sense) in response to natural stimuli. Because certain statistical properties of spike responses were suggested to facilitate computations in the cortex, acquiring a realistic firing regimen in cortical network models might be a prerequisite for analyzing their computational functions. We present a characterization and comparison of the statistical response properties of the primary visual cortex (V1) in vivo and in silico in response to natural stimuli. We recorded from multiple electrodes in area V1 of 4 macaque monkeys and developed a large state-of-the-art network model for a 5 × 5-mm patch of V1 composed of 35,000 neurons and 3.9 million synapses that integrates previously published anatomical and physiological details. By quantitative comparison of the model response to the “statistical fingerprint” of responses in vivo, we find that our model for a patch of V1 responds to the same movie in a way which matches the statistical structure of the recorded data surprisingly well. The deviation between the firing regimen of the model and the in vivo data are on the same level as deviations among monkeys and sessions. This suggests that, despite strong simplifications and abstractions of cortical network models, they are nevertheless capable of generating realistic spiking activity. To reach a realistic firing state, it was not only necessary to include both N -methyl-d-aspartate and GABAB synaptic conductances in our model, but also to markedly increase the strength of excitatory synapses onto inhibitory neurons (>2-fold) in comparison to literature values, hinting at the importance to carefully adjust the effect of inhibition for achieving realistic dynamics in current network models.


1998 ◽  
Vol 16 (5) ◽  
pp. 589-601 ◽  
Author(s):  
A. V. Pavlov

Abstract. We present a comparison of the observed behavior of the F-region ionosphere over Millstone Hill during the geomagnetically quiet and storm periods of 6–12 April 1990 with numerical model calculations from the IZMIRAN time-dependent mathematical model of the Earth's ionosphere and plasmasphere. The major enhancement to the IZMIRAN model developed in this study is the use of a new loss rate of O+(4S) ions as a result of new high-temperature flowing afterglow measurements of the rate coefficients K1 and K2 for the reactions of O+(4S) with N2 and O2. The deviations from the Boltzmann distribution for the first five vibrational levels of O2(v) were calculated, and the present study suggests that these deviations are not significant. It was found that the difference between the non-Boltzmann and Boltzmann distribution assumptions of O2(v) and the difference between ion and neutral temperature can lead to an increase of up to about 3 or a decrease of up to about 4 of the calculated NmF2 as a result of a respective increase or a decrease in K2. The IZMIRAN model reproduces major features of the data. We found that the inclusion of vibrationally excited N2(v > 0) and O2(v > 0) in the calculations improves the agreement between the calculated NmF2 and the data on 6, 9, and 10 April. However, both the daytime and nighttime densities are reproduced by the IZMIRAN model without the vibrationally excited nitrogen and oxygen on 8 and 11 April better than the IZMIRAN model with N2(v > 0) and O2(v > 0). This could be due to possible uncertainties in model neutral temperature and densities, EUV fluxes, rate coefficients, and the flow of ionization between the ionosphere and plasmasphere, and possible horizontal divergence of the flux of ionization above the station. Our calculations show that the increase in the O+ + N2 rate factor due to N2(v > 0) produces a 5-36 decrease in the calculated daytime peak density. The increase in the O++ O2 loss rate due to vibrational-ly excited O2 produces 8-46 reductions in NmF2. The effects of vibrationally excited O2 and N2 on Ne and Te are most pronounced during the daytime.Key words. Ion chemistry and composition · Ionosphere – atmosphere interactions · Ionospheric disturbances


2011 ◽  
Vol 11 (10) ◽  
pp. 4669-4677 ◽  
Author(s):  
R. Kohlhepp ◽  
S. Barthlott ◽  
T. Blumenstock ◽  
F. Hase ◽  
I. Kaiser ◽  
...  

Abstract. Trends of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) total column abundances above Kiruna (Northern Sweden, 67.84° N, 20.41° E) derived from nearly 14 years (1996–2009) of measurement and model data are presented. The measurements have been performed with a Bruker 120 HR (later Bruker 125 HR) Fourier transform infrared (FTIR) spectrometer and the chemistry-transport model (CTM) used was KASIMA (KArlsruhe SImulation model of the Middle Atmosphere). The total column abundances of ClONO2 and HF calculated by KASIMA agree quite well with the FTIR measurements while KASIMA tends to underestimate the HCl columns. To calculate the long-term trends, a linear function combined with an annual cycle was fitted to the data using a least squares method. The precision of the resulting trends was estimated with the bootstrap resampling method. For HF, both model and measurements show a positive trend that seems to decrease in the last few years. This suggests a stabilisation of the HF total column abundance. Between 1996 and 2009, KASIMA simulates an increase of (+1.51±0.07) %/yr which exceeds the FTIR result of (+0.65±0.25) %/yr. The trends determined for HCl and ClONO2 are significantly negative over the time period considered here. This is expected because the emission of their precursors (chlorofluorocarbons and hydrochlorofluorocarbons) has been restricted in the Montreal Protocol in 1987 and its amendments and adjustments. The trend for ClONO2 from the FTIR measurements amounts to (−3.28±0.56) %/yr and the one for HCl to (−0.81±0.23) %/yr. KASIMA simulates a weaker decrease: For ClONO2, the result is (−0.90±0.10) %/yr and for HCl (−0.17±0.06) %/yr. Part of the difference between measurement and model data can be explained by sampling and the stronger annual cycle indicated by the measurements. There is a factor of about four between the trends of HCl and ClONO2 above Kiruna for both measurement and model data.


MRS Advances ◽  
2015 ◽  
Vol 1 (23) ◽  
pp. 1703-1708 ◽  
Author(s):  
M. Yako ◽  
N. J. Kawai ◽  
Y. Mizuno ◽  
K. Wada

ABSTRACTThe kinetics of Ge lateral overgrowth on SiO2 with line-shaped Si seeds is examined. The growth process is described by the difference between the growth rates of Ge on (100) planes (GR100) and <311> facets (GR311). The theoretical calculations well reproduce the growth kinetics. It is shown that narrowing the line-seeds helps Ge coalescence and flat film formation.


2022 ◽  
Author(s):  
Nurcan Tuncbag ◽  
Seyma Unsal Beyge

Abstract Heterogeneity across tumors is the main obstacle in developing treatment strategies. Drug molecules not only perturb their immediate protein targets but also modulate multiple signaling pathways. In this study, we explored the networks modulated by several drug molecules across multiple cancer cell lines by integrating the drug targets with transcriptomic and phosphoproteomic data. As a result, we obtained 236 reconstructed networks covering five cell lines and 70 drugs. A rigorous topological and pathway analysis showed that chemically and functionally different drugs may modulate overlapping networks. Additionally, we revealed a set of tumor-specific hidden pathways with the help of drug network models that are not detectable from the initial data. The difference in the target selectivity of the drugs leads to disjoint networks despite sharing the exact mechanism of action, e.g., HDAC inhibitors. We also used the reconstructed network models to study potential drug combinations based on the topological separation, found literature evidence for a set of drug pairs. Overall, the network-level exploration of the drug perturbations may potentially help optimize treatment strategies and suggest new drug combinations.


Sign in / Sign up

Export Citation Format

Share Document