scholarly journals Fatigue life prediction method for notched 3D woven composites based on progressive damage and field intensity

2020 ◽  
Vol 15 ◽  
pp. 155892502097832
Author(s):  
Jiaming Xue ◽  
Weidong Wen ◽  
Haitao Cui

To solve the problem of fatigue life prediction of notched 3D woven composites, a novel fatigue life prediction method based on progressive damage and field intensity theory is proposed. By analyzing the initial loading process of 3D woven composite structure based on progressive damage method, the stress field when the fatigue damage develops gently and the dangerous area where the fatigue damage occurs first are obtained. Then combining with the concept of notch field intensity function, the failure criteria of composites and the three-dimensional space vector stress field intensity method, the fatigue damage degree field intensity of the fiber yarns in the dangerous area is analyzed and the most damaged fiber yarn is found. The fatigue life of the structure is calculated with the field intensity equivalent stress and the S-N curve of this fiber yarn. In order to verify the effectiveness of this method, the fatigue life of notched 3D woven composites under several stress levels is predicted and compared with the existing experimental data. The compared results show that the fatigue life prediction values are all within the two-fold error bounds of the experimental data, which are in good agreement with experimental results. Compared with the progressive damage fatigue life prediction method of woven composites, the prediction accuracy of the method proposed in this paper is improved by 31.5% on average, and the calculation efficiency is also greatly improved.

2012 ◽  
Vol 472-475 ◽  
pp. 591-595 ◽  
Author(s):  
Jun Liu ◽  
Feng Peng Zhang

Abstract. based on the accumulating fatigue damage model, with single ply plate theory and experiment data as the foundation, consider the interaction between adjacent layer and material degradation, a kind of fatigue life prediction method of fiber reinforced composite laminates is developed. The stiffness decline of each ply during cyclic loading is determined by the fatigue damage variable and the load amplitude and the fatigue life of any laminates can be predicted using the fatigue properties of single ply plate. Using this method a 3D Finite element model is established by ABAQUS software and the fatigue life and the fatigue damage evolution of a T300 / QY8911 laminats are analyzed, the results are more closer to the experimental results.


2014 ◽  
Vol 1064 ◽  
pp. 108-114 ◽  
Author(s):  
Jun Kang ◽  
Zhi Dong Guan ◽  
Zeng Shan Li ◽  
Zhun Liu

A three dimensional analysis model is developed on the fatigue life prediction of composite laminates based on a progressive damage analysis. This model consists of stress analysis, fatigue failure analysis and material property degradation. Teserpe’s failure criteria is used to fatigue damage analysis. Fiber tensile/compressive breakage, matrix tensile/compressive cracking, matrix/fiber shear failure and tension/compression delamination are considered in fatigue damage analysis. The methodologies of sudden degradation and gradual degradation are both applied in the material property degradation. The stiffness and strength gradual degradation is based on the Shokrieh fatigue model, which is based on fatigue test for unidirectional laminates. In order to consider the scatter of the material in the practical structures, the stiffness and strength of the material are randomly distributed using normal distribution in the numerical model. The progressive fatigue damage model is developed in finite element code ABAQUS through user subroutine UMAT, which can simulate the fatigue damage process. Fatigue life of different ply stacking sequences and geometries composite laminates under different cycle loading are predicted. The predicted fatigue life is in good agreement with the experimental results.


Author(s):  
Dino A. Celli ◽  
M.-H. Herman Shen ◽  
Onome E. Scott-Emuakpor ◽  
Tommy J. George

Abstract The aim of this paper is to provide a fatigue life prediction method which can concurrently approximate both SN behavior as well as the inherent variability of fatigue efficiently with a limited number of experimental tests. The purpose of such a tool is for the quality assessment and verification of components using Additive Manufacturing (AM) processes and other materials with a limited knowledgebase. Interest in AM technology is continually growing in many industries, such as aerospace, automotive, or biomedical. But components often result in highly variable fatigue performance. The determination of optimal process parameters for the build process can be an extensive and costly endeavor due to either a limited knowledgebase or proprietary restrictions. Quantifying the significant variability of fatigue performance in AM components is a challenging task as there are many causes including machine to machine differences, recycles of powder, and process parameter selection. Therefore, a life prediction method which can rapidly determine the fatigue performance of a material with little or no prior information of the material and a limited number of experimental tests is developed as an aid in process parameter selection and fatigue performance qualification. This is performed by using a previously developed and simplistic energy based fatigue life prediction method, or Two Point method, to predict the inherent variability associated with fatigue performance. The proposed approach is verified by using predicted distributions of stress and cycles to failure and comparing with experimental data at 104 and 106 cycles to failure. SN life prediction is modeled via a modified Random Fatigue Limit (RFL) model where the two RFL model parameters are evaluated using Bayesian statistical inference and stochastic sampling techniques for distribution estimation. This is performed in a dynamic way such that the life prediction model is continually updated with the generation of experimental data.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Guoyu Feng ◽  
Wenku Shi ◽  
Henghai Zhang ◽  
Qinghua Zu ◽  
Teng Teng ◽  
...  

Purpose of this paper is to investigate the fatigue life prediction method of the thrust rod based on the continuum damage mechanics. The equivalent stress used as damage parameters established rubber fatigue life prediction model. Through the finite element simulation and material test, the model parameters and the fatigue damage dangerous positions were obtained. By equivalent stress life model, uniaxial fatigue life of the V-type thrust rod is analyzed to predict the ratio of life and the life of the test was 1.73, within an acceptable range, and the fatigue damage occurring position and finite element analysis are basically the same. Fatigue life analysis shows that the method is of correct, theoretical, and practical value.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xipei Ma ◽  
Xintian Liu ◽  
Haijie Wang ◽  
Jiachi Tong ◽  
Xiaobing Yang

Fatigue life prediction is an important part of the reliability and durability analysis of automobile components. Based on Wang and Brown’s framework, multiaxial random fatigue damage was adopted to predict the fatigue life of half-shaft. The stress analysis of half-shaft was resolved analytically to determine the local stress tensor in the potential area of fracture. The maximum shear strain fatigue damage parameter and the normal stress fatigue damage parameter were evaluated to predict the fatigue life of half-shaft. The results show that the prediction method is reliable and meets the service life and safety requirements.


Sign in / Sign up

Export Citation Format

Share Document