scholarly journals Assessment of Genomic Instability in Medical Workers Exposed to Chronic Low-Dose X-Rays in Northern China

Dose-Response ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 155932581989137
Author(s):  
Lianying Fang ◽  
Jieqing Li ◽  
Weiguo Li ◽  
Xuesong Mao ◽  
Ya Ma ◽  
...  

The increasing use of ionizing radiation (IR) in medical diagnosis and treatment has caused considerable concern regarding the effects of occupational exposure on human health. Despite this concern, little information is available regarding possible effects and the mechanism behind chronic low-dose irradiation. The present study assessed potential genomic damage in workers occupationally exposed to low-dose X-rays. A variety of analyses were conducted, including assessing the level of DNA damage and chromosomal aberrations (CA) as well as cytokinesis-block micronucleus (CBMN) assay, gene expression profiling, and antioxidant level determination. Here, we report that the level of DNA damage, CA, and CBMN were all significantly increased. Moreover, the gene expression and antioxidant activities were changed in the peripheral blood of men exposed to low-dose X-rays. Collectively, our findings indicated a strong correlation between genomic instability and duration of low-dose IR exposure. Our data also revealed the DNA damage repair and antioxidative mechanisms which could result in the observed genomic instability in health-care workers exposed to chronic low-dose IR.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 840-840 ◽  
Author(s):  
Danielle N. Yarde ◽  
Lori A. Hazlehurst ◽  
Vasco A. Oliveira ◽  
Qing Chen ◽  
William S. Dalton

Abstract The FA/BRCA pathway is involved in DNA damage repair and its importance in oncogenesis has only recently been implicated. Briefly, 8 FA/BRCA pathway family members facilitate the monoubiquitination of FANCD2. Upon monoubiquitination, FANCD2 translocates to the DNA repair foci where it interacts with other proteins to initiate DNA repair. Previously, we reported that the FA/BRCA pathway is upregulated in multiple myeloma cell lines selected for resistance to melphalan (Chen, et al, Blood 2005). Further, reducing FANCF in the melphalan resistant 8226/LR5 myeloma cell line partially reversed resistance, whereas overexpressing FANCF in the drug sensitive 8226/S myeloma line conferred resistance to melphalan. Others have reported, and we have also verified, that bortezomib enhances melphalan response in myeloma cells; however, the mechanism of enhanced melphalan activity in combination with bortezomib has not been reported. Based on our observation that the FA/BRCA pathway confers melphalan resistance, we hypothesized that bortezomib enhances melphalan response by targeting FA/BRCA DNA damage repair pathway genes. To investigate this hypothesis, we first analyzed FA/BRCA gene expression in 8226/S and 8226/LR5 cells treated with bortezomib, using a customized microfluidic card (to detect BRCA1, BRCA2, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCL, RAD51 and RAD51C) and q-PCR. Interestingly, we found that low dose (5nM) bortezomib decreased many FA/BRCA pathway genes as early as 2 hours, with maximal decreases seen at 24 hours. Specifically, 1.5- to 2.5-fold decreases in FANCA, FANCC, FANCD2, FANCE and RAD51C were seen 24 hours post bortezomib exposure. Moreover, pre-treatment of myeloma cells with low dose bortezomib followed by melphalan treatment revealed a greater than 2-fold reduction in FANCD2 gene expression levels. We also found that melphalan treatment alone enhanced FANCD2 protein expression and activation (monoubiquitination), whereas the combination treatment of bortezomib followed by melphalan decreased activation and overall expression of FANCD2 protein. Taken together, these results suggest that bortezomib enhances melphalan response in myeloma by targeting the FA/BRCA pathway. Further understanding of the role of the FA/BRCA pathway in determining melphalan response may allow for more customized and effective treatment of myeloma.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582092210
Author(s):  
Kanokporn Noy Rithidech ◽  
S. M. J. Mortazavi ◽  
Antone L. Brooks

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Richard D. A. Wilkinson ◽  
Roberta E. Burden ◽  
Sara H. McDowell ◽  
Darragh G. McArt ◽  
Stephen McQuaid ◽  
...  

Cathepsin S (CTSS) has previously been implicated in a number of cancer types, where it is associated with poor clinical features and outcome. To date, patient outcome in breast cancer has not been examined with respect to this protease. Here, we carried out immunohistochemical (IHC) staining of CTSS using a breast cancer tissue microarray in patients who received adjuvant therapy. We scored CTSS expression in the epithelial and stromal compartments and evaluated the association of CTSS expression with matched clinical outcome data. We observed differences in outcome based on CTSS expression, with stromal-derived CTSS expression correlating with a poor outcome and epithelial CTSS expression associated with an improved outcome. Further subtype characterisation revealed high epithelial CTSS expression in TNBC patients with improved outcome, which remained consistent across two independent TMA cohorts. Furtherin silicogene expression analysis, using both in-house and publicly available datasets, confirmed these observations and suggested high CTSS expression may also be beneficial to outcome in ER-/HER2+ cancer. Furthermore, high CTSS expression was associated with the BL1 Lehmann subgroup, which is characterised by defects in DNA damage repair pathways and correlates with improved outcome. Finally, analysis of matching IHC analysis reveals an increased M1 (tumour destructive) polarisation in macrophage in patients exhibiting high epithelial CTSS expression. In conclusion, our observations suggest epithelial CTSS expression may be prognostic of improved outcome in TNBC. Improved outcome observed with HER2+ at the gene expression level furthermore suggests CTSS may be prognostic of improved outcome in ER- cancers as a whole. Lastly, from the context of these patients receiving adjuvant therapy and as a result of its association with BL1 subgroup CTSS may be elevated in patients with defects in DNA damage repair pathways, indicating it may be predictive of tumour sensitivity to DNA damaging agents.


Author(s):  
Annemarie E. M. Post ◽  
Johan Bussink ◽  
Fred C. G. J. Sweep ◽  
Paul N. Span

Tamoxifen-induced radioresistance, reported in vitro, might pose a problem for patients who receive neoadjuvant tamoxifen treatment and subsequently receive radiotherapy after surgery. Previous studies suggested that DNA damage repair or cell cycle genes are involved, and could therefore be targeted to preclude the occurrence of cross-resistance. We aimed to characterize the observed cross-resistance by investigating gene expression of DNA damage repair genes and cell cycle genes in estrogen receptor-positive MCF-7 breast cancer cells that were cultured to tamoxifen resistance. RNA sequencing was performed, and expression of genes characteristic for several DNA damage repair pathways was investigated, as well as expression of genes involved in different phases of the cell cycle. The association of differentially expressed genes with outcome after radiotherapy was assessed in silico in a large breast cancer cohort. None of the DNA damage repair pathways showed differential gene expression in tamoxifen-resistant cells compared to wild-type cells. Two DNA damage repair genes were more than two times upregulated (NEIL1 and EME2), and three DNA damage repair genes were more than two times downregulated (PCNA, BRIP1, and BARD1). However, these were not associated with outcome after radiotherapy in the TCGA breast cancer cohort. Genes involved in G1, G1/S, G2, and G2/M phases were lower expressed in tamoxifen-resistant cells compared to wild-type cells. Individual genes that were more than two times upregulated (MAPK13) or downregulated (E2F2, CKS2, GINS2, PCNA, MCM5, and EIF5A2) were not associated with response to radiotherapy in the patient cohort investigated. We assessed the expression of DNA damage repair genes and cell cycle genes in tamoxifen-resistant breast cancer cells. Though several genes in both pathways were differentially expressed, these could not explain the cross-resistance for irradiation in these cells, since no association to response to radiotherapy in the TCGA breast cancer cohort was found.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 110
Author(s):  
Antonella Tramutola ◽  
Susanna Falcucci ◽  
Umberto Brocco ◽  
Francesca Triani ◽  
Chiara Lanzillotta ◽  
...  

The ultraviolet (UV) component of solar radiation is the major driving force of skin carcinogenesis. Most of studies on UV carcinogenesis actually focus on DNA damage while their proteome-damaging ability and its contribution to skin carcinogenesis have remained largely underexplored. A redox proteomic analysis of oxidized proteins in solar-induced neoplastic skin lesion and perilesional areas has been conducted showing that the protein oxidative burden mostly concerns a selected number of proteins participating to a defined set of functions, namely: chaperoning and stress response; protein folding/refolding and protein quality control; proteasomal function; DNA damage repair; protein- and vesicle-trafficking; cell architecture, adhesion/extra-cellular matrix (ECM) interaction; proliferation/oncosuppression; apoptosis/survival, all of them ultimately concurring either to structural damage repair or to damage detoxication and stress response. In peri-neoplastic areas the oxidative alterations are conducive to the persistence of genetic alterations, dysfunctional apoptosis surveillance, and a disrupted extracellular environment, thus creating the condition for transformant clones to establish, expand and progress. A comparatively lower burden of oxidative damage is observed in neoplastic areas. Such a finding can reflect an adaptive selection of best fitting clones to the sharply pro-oxidant neoplastic environment. In this context the DNA damage response appears severely perturbed, thus sustaining an increased genomic instability and an accelerated rate of neoplastic evolution. In conclusion UV radiation, in addition to being a cancer-initiating agent, can act, through protein oxidation, as a cancer-promoting agent and as an inducer of genomic instability concurring with the neoplastic progression of established lesions.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2077-2077
Author(s):  
Kwok Peng Ng ◽  
Soledad Negrotto ◽  
Zhenbo Hu ◽  
Kevin A Link ◽  
Santosh L Saraf ◽  
...  

Abstract Abstract 2077 Poster Board II-54 Conventional drug therapy for AML is limited by toxic effects on normal hematopoietic stem cells (nHSC), and dependence on p53/apoptosis pathways that are impaired in malignancy. In hematopoiesis, key transcription factors (TF) determine cell-fate. Here, a difference in nHSC versus leukemia initiating-cell (LIC) TF expression is used to overcome the above limitations. The DNA methylating enzyme DNA methyl-transferase 1 (DNMT1) is also a component of multi-protein histone methyl-transferase complexes. Accordingly, shRNA mediated depletion of DNMT1 in hematopoietic cells hypomethylated DNA and decreased global H3K27 and H3K9 trimethylation (histone marks associated with transcription repression) by >70%. These epigenetic modifications were reproduced using a clinically relevant method: the cytosine analogue decitabine, added to normal human CD34+ hematopoietic precursor cells at 0.2–0.5uM 2–3X/week, depleted DNMT1, H3K27 and H3K9 trimethylation by >70% and significantly hypomethylated DNA (Illumina CpG Microarray). These decitabine levels did not cause measurable DNA damage (H2AX phosphorylation and Fast Micromethod) or apoptosis (Annexin staining and caspase 3 activity). Therefore, at low levels, decitabine can produce broad chromatin changes that increase TF access to target genes, without causing measurable DNA damage or apoptosis. The gene-expression/cell-fate consequences of opening chromatin with decitabine likely depend on the pre-existing TF expression pattern. HOXB4 (stem cell TF), CEBPa (lineage-specifying TF), and CEBPe (late differentiation TF) levels were measured by RQ-PCR in CD34+ cells from AML (n=3) versus normal bone marrow (n=3). AML CD34+ expressed >50-fold higher CEBPa, but HOXB4 and CEBPe levels comparable to normal CD34+ cells, a pattern confirmed in microarray gene expression analysis (CD34+ and myeloblasts, AML n=321, normal n=51 (GEO)). Repression of late differentiation TF likely involves chromatin-modification, regardless of underlying cause. Therefore, depleting DNMT1 to open chromatin in AML cells expressing high lineage-specifying TF could resume differentiation and terminate AML self-renewal, while nHSC, with high stem cell TF and little lineage-specifying TF, should continue to self-renew. nHSC and human MLL-AF9 AML cells were treated identically with decitabine for 7 days, then 300,000 each viable MLL-AF9 and nHSC were combined and transplanted into NSG mice (n = 8). Mice that received PBS treated cells died by week 5 (>90% human myeloblasts in bone marrow). Mice that received decitabine treated cells remained healthy until sacrifice for analysis at week 12 (log-rank p = 0.02, no detectable leukemia, >80% normal human hematopoietic cell marrow engraftment). Direct treatment of mice with established MLL-AF9 leukemia with very low dose decitabine 1mg/m2 3X/week extended survival by >20% (log-rank p = 0.04). Decitabine 0.5uM 2X/week induced morphologic differentiation, but not early apoptosis, in primary patient samples (n=15) and leukemia cell-lines (n=4). Cell-cycle exit by differentiation versus apoptosis may utilize different cyclin dependent kinase inhibitors (CDKN). The THP1 AML cell line contains a homozygous frame-shift mutation in TP53 (p.R174fs*3) and no detectable p53 RNA/protein. THP1 cells were treated with equimolar Ara-C or decitabine. Ara-C weakly upregulated CDKN1A (p21) but not CDKN2B (p15), and produced a transient decrease in cell-counts (D3-5) with recovery and growth similar to control by D7. Decitabine strongly upregulated p15, weakly upregulated p21, and produced gradual but complete and durable abrogation of cell growth by D7. A 66y patient with transfusion dependent RCMD with 5q-, 15q- and severe comorbidities was treated with metronomic (instead of cycled) very low dose SQ decitabine (0.2mg/kg [7.5mg/m2] 2X/week) to avoid cytotoxicity and sustain differentiation modification. Platelets increased by week 4, hematologic remission occurred by week 8 and cytogenetic remission by week 14 (without significant side-effects). Rationalizing dose and schedule of decitabine exploits a difference in nHSC and LIC TF expression to selectively terminate LIC self-renewal by a non-p53 dependent differentiation pathway. This approach, distinct from conventional apoptosis-based therapy, could have a very favorable safety profile, with efficacy in MDS/AML with complex cytogenetic abnormalities. Disclosures: Off Label Use: Decitabine, to treat myelodysplastic syndrome using a novel dose and schedule. Advani:Cephalon: Research Funding. Saunthararajah:HemaQuest: Consultancy.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582096261
Author(s):  
Zhuo Wang ◽  
Ming-Yue Lv ◽  
Yao-Xiong Huang

Background: We aimed to reveal if low dose X-rays would induce harmful or beneficial effect or dual response on biological cells and whether there are conditions the radiation can enhance gene transfer efficiency and promote cell growth but without damage to the cells. Method: A systematic study was performed on the effects of Kilo-V and Mega-V X-rays on the cell morphology, viability, membrane permeability, DNA damage, and gene transfection of 293 T and CHO cells. Results: The Kilo-V X-rays of very low doses from 0.01 to 0.04 Gray in principle didn’t induce any significant change in cell morphology, growth, membrane permeability, and cause DNA damage. The Mega-V X-ray had a damage threshold between 1.0 and 1.5 Gray. The 0.25 Gray Mega-V-X-ray could promote cell growth and gene transfer, while the 1.5 Gray Mega-V X-ray damaged cells. Conclusion: The very low dose of KV X-rays is safe to cells, while the effects of Mega-V-X-rays are dose-dependent. Mega-V-X-rays with a dose higher than the damage threshold would be harmful, that between 1.0 -1.5 Gray can evoke dual effects, whereas 0.25 Gray MV X-ray is beneficial for both cell growth and gene transfer, thus would be suitable for radiation-enhanced gene transfection.


Sign in / Sign up

Export Citation Format

Share Document