scholarly journals On Heat Transfer enhancement in Diesel Engine Cylinder Head Using γ-Al2O3/water nanofluid with different nanoparticle sizes

2020 ◽  
Vol 12 (1) ◽  
pp. 168781401989750 ◽  
Author(s):  
Mohsen Salem Radwan ◽  
Hosam E Saleh ◽  
Youssef Ahmed Attai ◽  
Mohamed Salah Elsherbiny

In the current work, an experimental investigation of γ-Al2O3/water characteristics nanofluid was performed for convective cooling of engine cylinder head for fully developed turbulent regime. Nanoparticles of different sizes were mixed in distilled water with constant volume fraction of 1% through the experiments. The cylinder head was simulated as a rectangular duct, of an aspect ratio of 0.8, with a cast iron test specimen from actual cylinder head of diesel engine. The effect of different nanoparticle sizes (30, 100, and 150 nm), bulk temperature (60°C, 70°C, and 80°C), and flow velocity (1, 1.5 and 2 m/s) were investigated at variable heat fluxes. The experimental results revealed that the obtained enhancement of convective heat transfer coefficient is inversely proportional to both nanoparticle diameter and bulk temperature and directly proportional to the coolant flow velocity. Also, the highest achieved enhancement over the pure base fluid in heat transfer coefficient is 88.74% at 30 nm particle size. The γ-Al2O3/water nanofluid showed promising results for intensive study with different operating conditions.

2015 ◽  
Vol 19 (6) ◽  
pp. 2025-2037 ◽  
Author(s):  
Zhong-Gen Su ◽  
Wei Zheng ◽  
Zhen-Dong Zhang

To improve the heat-transfer performance of a diesel-engine cylinder head, nanofluid coolant as a new fluid was investigated, and jet impingement technology was then used to study on how to better improve heat-transfer coefficient at the nose bridge area in the diesel-engine cylinder head. Computational fluid dynamic simulation and experiments results demonstrated that using the same jet impingement parameters, the different volume shares of nanofluids showed better cooling effect than traditional coolant, but the good effect of the new cooling method was unsuitable for high volume share of nanofluid. At the same volume share of nanofluid, different jet impingement parameters such as jet angles showed different heat-transfer performance. This result implies that a strong association exists between jet impingement parameters and heat-transfer coefficient. The increase in coolant viscosity of the nanofluid coolant using jet impingement requires the expense of more drive-power cost.


Author(s):  
C A Finol ◽  
K Robinson

Existing methods for predicting heat fluxes and temperatures in internal combustion engines, which take the form of correlations to estimate the heat transfer coefficient on the gas-side of the combustion chamber, are based on methodology developed over the past 50 years, often updated in view of more recent experimental data. The application of these methods to modern diesels engines is questionable because key technologies found in current engines did not exist or were not widely used when those methods were developed. Examples of such technologies include: high-pressure common rail and variable fuel injection strategies including retarded injection for nitrogen oxides emission control; exhaust gas re-circulation; high levels of intake boost pressure provided by a single- or double-stage turbocharger and inter-cooling; multiple valves per cylinder and lower swirl; and advanced engine management systems. This suggests a need for improved predicting tools of thermal conditions, specifically temperature and heat flux profiles in the engine block and cylinder head. In this paper a modified correlation to predict the gas-side heat transfer coefficient in diesel engines is presented. The equation proposed is a simple relationship between Nu and Re calibrated to predict the instantaneous spatially averaged heat transfer coefficient at several operating conditions using air as gas in the model. It was derived from the analysis of experimental data obtained in a modern diesel engine and is supported by a research methodology comprising the application of thermodynamic principles and fundamental equations of heat transfer. The results showed that the new correlation adequately predicted the instantaneous coefficient throughout the operating cycle of a high-speed diesel engine. It also estimated the corresponding cycle-averaged heat transfer coefficient within 10 per cent of the experimental value for the operating conditions considered in the analysis.


2011 ◽  
Vol 52-54 ◽  
pp. 338-342
Author(s):  
Xiao Liu ◽  
Wei Zheng Zhang ◽  
Chang Hu Xiang

To evaluate the efficiency of drilled cooling in the valve bridge of cylinder head, theoretical analysis for the drilled cooling is carried out, and a mathematical model for the enhanced cooling is presented based on a simplified 3D model. The mathematical model is validated by numerical study on the heat transfer with and without drilled cooling, which is carried out through fluid-solid coupling. The correlation between the velocity in the drilled passage and heat transfer coefficient was also analyzed. The results can be used to solve the heat transfer in enhanced diesel engine.


Author(s):  
Haroun Ragueb ◽  
Kacem Mansouri

PurposeThe purpose of this study is to investigate the thermal response of the laminar non-Newtonian fluid flow in elliptical duct subjected to a third-kind boundary condition with a particular interest to a non-Newtonian nanofluid case. The effects of Biot number, aspect ratio and fluid flow behavior index on the heat transfer have been examined carefully.Design/methodology/approachFirst, the mathematical problem has been formulated in dimensionless form, and then the curvilinear elliptical coordinates transform is applied to transform the original elliptical shape of the duct to an equivalent rectangular numerical domain. This transformation has been adopted to overcome the inherent mathematical deficiency due to the dependence of the ellipsis contour on the variables x and y. The yielded problem has been successfully solved using the dynamic alternating direction implicit method. With the available temperature field, several parameters have been computed for the analysis purpose such as bulk temperature, Nusselt number and heat transfer coefficient.FindingsThe results showed that the use of elliptical duct enhances significantly the heat transfer coefficient and reduces the duct’s length needed to achieve the thermal equilibrium. For some cases, the reduction in the duct’s length can reach almost 50 per cent compared to the circular pipe. In addition, the analysis of the non-Newtonian nanofluid case showed that the addition of nanoparticles to the base fluid improves the heat transfer coefficient up to 25 per cent. The combination of using an elliptical duct and the addition of nanoparticles has a spectacular effect on the overall heat transfer coefficient with an enhancement of 50-70 per cent. From the engineering applications view, the results demonstrate the potential of elliptical duct in building light-weighted compact shell-and-tube heat exchangers.Originality/valueA complete investigation of the heat transfer of a fully developed laminar flow of power law fluids in elliptical ducts subject to the convective boundary condition with application to non-Newtonian nanofluids is addressed.


Author(s):  
Godwin Ita Ekong ◽  
Christopher A. Long ◽  
Peter R. N. Childs

Compressor tip clearance for a gas turbine engine application is the radial gap between the stationary compressor casing and the rotating blades. The gap varies significantly during different operating conditions of the engine due to centrifugal forces on the rotor and differential thermal expansions in the discs and casing. The tip clearance in the axial flow compressor of modern commercial civil aero-engines is of significance in terms of both mechanical integrity and performance. In general, the clearance is of critical importance to civil airline operators and their customers alike because as the clearance between the compressor blade tips and the casing increases, the aerodynamic efficiency will decrease and therefore the specific fuel consumption and operating costs will increase. This paper reports on the development of a range of concepts and their evaluation for the reduction and control of tip clearance in H.P. compressors using an enhanced heat transfer coefficient approach. This would lead to improvement in cruise tip clearances. A test facility has been developed for the study at the University of Sussex, incorporating a rotor and an inner shaft scaled down from a Rolls-Royce Trent aero-engine to a ratio of 0.7:1 with a rotational speed of up to 10000 rpm. The idle and maximum take-off conditions in the square cycle correspond to in-cavity rotational Reynolds numbers of 3.1×106 ≤ Reφ ≤ 1.0×107. The project involved modelling of the experimental facilities, to demonstrate proof of concept. The analysis shows that increasing the thermal response of the high pressure compressor (HPC) drum of a gas turbine engine assembly will reduce the drum time constant, thereby reducing the re-slam characteristics of the drum causing a reduction in the cold build clearance (CBC), and hence the reduction in cruise clearance. A further reduction can be achieved by introducing radial inflow into the drum cavity to further increase the disc heat transfer coefficient in the cavity; hence a further reduction in disc drum time constant.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 639 ◽  
Author(s):  
Krzysztof Wilczyński ◽  
Przemysław Narowski

Simulation studies were performed on filling imbalance in geometrically balanced injection molds. A special simulation procedure was applied to simulate properly the phenomenon, including inertia effects and 3D tetrahedron meshing as well as meshing of the nozzle. The phenomenon was investigated by simulation using several different runner systems at various thermo-rheological material parameters and process operating conditions. It has been observed that the Cross-WLF parameters, index flow, critical shear stress (relaxation time), and zero viscosity, as well as thermal diffusivity and heat transfer coefficient strongly affect the filling imbalance. The effect is substantially dependent on the runners’ layout geometry, as well as on the operating conditions, flow rate, and shear rate. The standard layout geometry and the corrected layout with circled element induce positive imbalance which means that inner cavities fills out faster, and it is opposite for the corrected layouts with one/two overturn elements which cause negative imbalance. Generally, for the standard layout geometry and the corrected layout with circled element, an effect of the zero shear rate viscosity η0 is positive (imbalance increases with an increase of viscosity), and an effect of the power law index n and the relaxation time λ is negative (imbalance decreases with an increase of index n and relaxation time λ). An effect of the thermal diffusivity α and heat transfer coefficient h is negative while an effect of the shear rate is positive. For the corrected layouts with one/two overturn elements, the results of simulations indicate opposite relationships. A novel optimization approach solving the filling imbalance problem and a novel concept of global modeling of injection molding process are also discussed.


1981 ◽  
Vol 103 (2) ◽  
pp. 218-225 ◽  
Author(s):  
E. M. Sparrow ◽  
S. Acharya

A conjugate conduction-convection analysis has been made for a vertical plate fin which exchanges heat with its fluid environment by natural convection. The analysis is based on a first-principles approach whereby the heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum, and energy in the fluid boundary layer adjacent to the fin. The natural convection heat transfer coefficient is not specified in advance but is one of the results of the numerical solutions. For a wide range of operating conditions, the local heat transfer coefficients were found not to decrease monotonically in the flow direction, as is usual. Rather, the coefficient decreased at first, attained a minimum, and then increased with increasing downstream distance. This behavior was attributed to an enhanced buoyancy resulting from an increase in the wall-to-fluid temperature difference along the streamwise direction. To supplement the first-principles analysis, results were also obtained from a simple adaptation of the conventional fin model.


Author(s):  
Mark Ricklick ◽  
Stephanie Kersten ◽  
V. Krishnan ◽  
J. S. Kapat

High performance turbine airfoils are typically cooled with a combination of internal cooling channels and impingement/film cooling. In such applications, the jets impinge against a target surface, and then exit along the channel formed by the jet plate, target plate, and side walls. Local convection coefficients are the result of both the jet impact, as well as the channel flow produced from the exiting jets. Numerous studies have explored the effects of jet array and channel configurations on both target and jet plate heat transfer coefficients. However, little work has been done in examining effects on the channel side walls, which may be a major contributor to heat transfer in real world applications. This paper examines the local and averaged effects of channel height and on heat transfer coefficients, with special attention given to the channel side walls. The effects on heat transfer results due to bulk temperature variations were also investigated. High resolution local heat transfer coefficient distributions on target and side wall surfaces were measured using temperature sensitive paint and recorded via a scientific grade charge-coupled device (CCD) camera. Streamwise pressure distributions for both the target and side walls was recorded and used to explain heat transfer trends. Results are presented for average jet based Reynolds numbers between 17,000 and 45,000. All experiments were carried out on a large scale single row, 15 hole impingement channel, with X/D of 5, Y/D of 4, and Z/D of 1, 3 and 5. The results obtained from this investigation will aid in the validation of predictive tools and development of physics-based models.


Author(s):  
Murali Krishnan R. ◽  
Zain Dweik ◽  
Deoras Prabhudharwadkar

This paper provides an extension of the previously described [1] formulation of a one-dimensional model for steady, compressible flow inside a channel, to the steam turbine application. The major challenge faced in the network simulation of the steam turbine secondary system is the prediction of the condensation that occurs during the engine start-up on the cold parts that are below the saturation temperature. Neglecting condensation effects may result in large errors in the engine temperatures since they are calculated based on the boundary conditions (heat transfer coefficient and bulk temperature) which depend on the solution of the network analysis. This paper provides a detailed formulation of a one-dimensional model for steady, compressible flow inside a channel which is based on the solution of two equations for a coupled system of mass, momentum and energy equations with wall condensation. The model also accounts for channel area variation, inclination with respect to the engine axis, rotation, wall friction and external heating. The formulation was first validated against existing 1D correlation for an idealized case. The wall condensation is modeled using the best-suited film condensation models for pressure and heat transfer coefficient available in the literature and has been validated against the experimental data with satisfactory predictions.


Sign in / Sign up

Export Citation Format

Share Document