scholarly journals Experimental design and numerical validation of a low-cost water heater by electromagnetic induction

2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110552
Author(s):  
Luis A Aguilar-Peréz ◽  
Jóse A Merino-García ◽  
Fermin Ramírez-Crescencio ◽  
Ignacio Villanueva-Fierro ◽  
Christopher R Torres-SanMiguel

This study shows a new approach to heat water in a residential environment. An electromagnetic heating method is proposed. A steel bar inside a pipeline filled with water is heated by five arrangements of a copper coil which incites the steel bar by electromagnetic induction. Consequently, numerical simulation and experimental evaluation are compared. The outcomes evaluated two different scenarios: steady water and a water flow of 0.16 kg/s. Three rods demonstrated that current induction of 20 A at the surface of the steel bar heats at 157°C. Also, the maximum value reached is 58°C. Heating the water upon for those conditions, the proposed tankless instantaneous water heater (TIWH) reaches a temperature of 41.01°C with one rod but only reaches 37.92°C with three rods in a series configuration, in a parallel configuration, the maximum temperature reached was 28.73°C.

2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2021 ◽  
Vol 11 (14) ◽  
pp. 6405
Author(s):  
Pere Marti-Puig ◽  
Alejandro Bennásar-Sevillá ◽  
Alejandro Blanco-M. ◽  
Jordi Solé-Casals

Today, the use of SCADA data for predictive maintenance and forecasting of wind turbines in wind farms is gaining popularity due to the low cost of this solution compared to others that require the installation of additional equipment. SCADA data provides four statistical measures (mean, standard deviation, maximum value, and minimum value) of hundreds of wind turbine magnitudes, usually in a 5-min or 10-min interval. Several studies have analysed the loss of information associated with the reduction of information when using five minutes instead of four seconds as a sampling frequency, or when compressing a time series recorded at 5 min to 10 min, concluding that some, but not all, of these magnitudes are seriously affected. However, to our knowledge, there are no studies on increasing the time interval beyond 10 min to take these four statistical values, and how this aggregation affects prognosis models. Our work shows that, despite the irreversible loss of information that occurs in the first 5 min, increasing the time considered to take the four representative statistical values improves the performance of the predicted targets in normality models.


Author(s):  
Xi Wang ◽  
Danny Crookes ◽  
Sue-Ann Harding ◽  
David Johnston

AbstractThis paper proposes a new approach to universal access based on the premise that humans have the universal capacity to engage emotionally with a story, whatever their ability. Our approach is to present the “story” of museum resources and knowledge as a journey, and then represent this journey physically as a smart map. The key research question is to assess the extent to which our “story” to journey to smart map’ (SJSM) approach provides emotional engagement as part of the museum experience. This approach is applied through the creation of a smart map for blind and partially sighted (BPS) visitors. Made in partnership with Titanic Belfast, a world-leading tourist attraction, the interactive map tells the story of Titanic’s maiden voyage. The smart map uses low-cost technologies such as laser-cut map features and software-controlled multi-function buttons for the audio description (AD). The AD is enhanced with background effects, dramatized personal stories and the ship’s last messages. The results of a reception study show that the approach enabled BPS participants to experience significant emotional engagement with museum resources. The smart model also gave BPS users a level of control over the AD which gave them a greater sense of empowerment and independence, which is particularly important for BPS visitors with varying sight conditions. We conclude that our SJSM approach has considerable potential as an approach to universal access, and to increase emotional engagement with museum collections. We also propose several developments which could further extend the approach and its implementation.


2017 ◽  
Vol 31 (25) ◽  
pp. 1745001 ◽  
Author(s):  
Qiudong Guo ◽  
Peng Zhang ◽  
Lin Bo ◽  
Guibin Zeng ◽  
Dengqian Li ◽  
...  

With the rapid development of manufacturing technology of high temperature superconductive YB[Formula: see text]Cu3O[Formula: see text] YBCO materials and decreasing in cost of production, YBCO is marching into industrial areas with its good performances as source of high-magnetic field and rather low cost in reaching superconductivity. Based on analysis of the performance of high temperature superconductors YBCO and development of technology in superconductive magnetic separation both home and abroad, we propose a new approach of taking YBCO tape to make a solenoid as the source of a high magnetic field of magnetic separatior of ores. The paper also looks into the future of the YBCO high temperature superconductive magnetic separation from the perspective of technology and cost, as well as its applications in other industries.


2021 ◽  
Author(s):  
Jingru Wang ◽  
Yuehe Ge ◽  
Zhizhang (David) Chen ◽  
Zhimeng Xu ◽  
Hai Zhang

Abstract Optical metasurfaces are researched more and more intensively for the possible realization of lightweight and compact optical devices with novel functionalities. In this paper, a new beam-steering system based on double metasurface lenses (metalenses) is proposed and developed. The proposed system is lightweight, small volume, low cost, and easy to integrate. The exact forward and inverse solutions are derived respectively using the generalized Snell’s law of refraction. Given the orientations of the double metalenses, the pointing position can be accurately determined. If the desired pointing position is given, the required metalenses’ orientations can be obtained by applied global optimization algorithms to solve nonlinear equations related to the inverse problem. The relationships of the scan region and blind zone with the system parameters are derived. The method to eliminate the blind zone is given. Comparison with double Risley-prism systems is also conducted. This work provides a new approach to control light beams.


2018 ◽  
Vol 14 (2) ◽  
pp. 213-218
Author(s):  
Chong Kim Soon ◽  
Nawoor Anusha Devi ◽  
Kok Beng Gan ◽  
Sue-Mian Then

A thermal cycler is used to amplify segments of DNA using the polymerase chain reaction (PCR). It is an instrument that requires precise temperature control and rapid temperature changes for certain experimental protocols. However, the commercial thermal cyclers are still bulky, expensive and limited for laboratory use only.  As such it is difficult for on-site molecular screening and diagnostics. In this work, a portable and low cost thermal cycler was designed and developed. The thermal cycler block was designed to fit six microcentrifuge tubes. A Proportional-Integral temperature controller was used to control the thermal cycler block temperature. The results showed that the maximum temperature ramp rate of the developed thermal cycler was 5.5 °C/s. The proportional gain (Kp) and integral gain (Ki) of the PI controller were 15 A/V and 1.8 A/Vs respectively. Finally, the developed thermal cycler successfully amplified six DNA samples at the expected molecular weight of 150 base pair. It has been validated using the Eppendorf Mastercycler nexus gradient system and gel electrophoresis analysis


Author(s):  
Hariharasakthisudhan P ◽  
Hariharasudhan T ◽  
Karthik S ◽  
Sathickbasha K ◽  
Surya Rajan B

The workability study of the composites enhances the understanding of the degree of plastic deformation that can be employed on it. The current research work highlights the response of the low-cost aluminum composites reinforced with exhausted alkaline battery powders under quasi-static compression. The effect of reinforcements and aspect ratio against the strain hardening exponent and strength coefficients were investigated. The microstructural changes after quasi-static compression were studied and related to the changes in the property of the composites. The composite with 6 wt.% of reinforcement showed the least amount of porosity as 1.2%. In most of the cases, the maximum value of average strain hardening exponent with respect to axial strain was noted in the composites with 6 wt. % of reinforcement. The lowest aspect ratio of 0.5 showed the maximum workability in the composites. The average strength coefficient was found to be maximum (308.58 MPa) in the composite with 2 wt.% reinforcement. The elongated grains and slip bands were observed in the microstructure of the compressed specimens.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000718-000723
Author(s):  
Jared Pettit ◽  
Alman Law ◽  
Alex Brewer ◽  
John Moore

As the 3DIC market matures, more is understood about the technical and cost challenges [1]. At the 2013 Semicon-West gathering, a panel of global experts identified these technical challenges to represent some of the most significant barriers to the industry's efforts to maintain progress with Moore's Law [2]. Searching and achieving high value manufacturing of 3DIC devices requires wrestling with several technologies and processes, all which may assert a different value for the manufacturer [3]. Current technologies for thin wafer support use a wide range of adhesives applied to the device wafer, bonded to a carrier, backside processed, and de-bonded by an array of methods. Daetec has been investigating temporary bonding for nearly 15yrs, is producing a range of products for semiconductor (e.g. WaferBondTM (Brewer-Science, Inc.)) [4], and for the display market using a low-cost tunable adhesion-force material that is peeled by simple means [5]. Daetec has developed a new technology, DaeBond 3DTM, allowing de-bonding to occur in a batch process while thinned wafers are affixed to film frames. This new approach provides a shift in conventional practice. Our paper presents several temporary bonding options with DaeBond 3DTM in an effort to define value-added approaches for thin wafer handling.


2019 ◽  
Vol 145 (3) ◽  
pp. 04019008 ◽  
Author(s):  
D. D. Lichti ◽  
C. L. Glennie ◽  
A. Jahraus ◽  
P. Hartzell
Keyword(s):  
Low Cost ◽  

Author(s):  
Jindrich Liska ◽  
Jan Jakl ◽  
Vojtech Vasicek

Ensuring the reliability of the steam turbine is fundamental task for its proper operation. Early detection of any failure avoids material and financial losses. A very important task in turbomachinery diagnostics is monitoring of rotating blades vibration, especially in terms of the last stages of low-pressure turbine parts, where, in general, the vibration can reach the important level due the blades length. The commonly used methods are based on stress evaluation using strain gauges or on the non-contact measurement of blade tips – blade tip-timing (BTT) method. Rising demand for low-cost monitoring systems suitable for blade monitoring has led to development of a new approach based on signal processing of standard turbine instrumentation. The symptoms of blade vibration could be also visible in signals from relative shaft vibration (SV) sensors, which are standardly installed in turbine journal bearings. This paper illustrates the principles and possibilities of the approach based on processing of SV signals for monitoring of actual state of rotating blades. Finally, the comparison of parallel measurements using SV and BTT in operation of steam turbine reveals the properties and advantages of both methods.


Sign in / Sign up

Export Citation Format

Share Document