High Value Thin Wafer Support Technology for 3DIC

2014 ◽  
Vol 2014 (1) ◽  
pp. 000718-000723
Author(s):  
Jared Pettit ◽  
Alman Law ◽  
Alex Brewer ◽  
John Moore

As the 3DIC market matures, more is understood about the technical and cost challenges [1]. At the 2013 Semicon-West gathering, a panel of global experts identified these technical challenges to represent some of the most significant barriers to the industry's efforts to maintain progress with Moore's Law [2]. Searching and achieving high value manufacturing of 3DIC devices requires wrestling with several technologies and processes, all which may assert a different value for the manufacturer [3]. Current technologies for thin wafer support use a wide range of adhesives applied to the device wafer, bonded to a carrier, backside processed, and de-bonded by an array of methods. Daetec has been investigating temporary bonding for nearly 15yrs, is producing a range of products for semiconductor (e.g. WaferBondTM (Brewer-Science, Inc.)) [4], and for the display market using a low-cost tunable adhesion-force material that is peeled by simple means [5]. Daetec has developed a new technology, DaeBond 3DTM, allowing de-bonding to occur in a batch process while thinned wafers are affixed to film frames. This new approach provides a shift in conventional practice. Our paper presents several temporary bonding options with DaeBond 3DTM in an effort to define value-added approaches for thin wafer handling.

2021 ◽  
Vol 4 ◽  
Author(s):  
Debomitra Dey ◽  
Jana K. Richter ◽  
Pichmony Ek ◽  
Bon-Jae Gu ◽  
Girish M. Ganjyal

The processing of agricultural products into value-added food products yields numerous by-products or waste streams such as pomace (fruit and vegetable processing), hull/bran (grain milling), meal/cake (oil extraction), bagasse (sugar processing), brewer's spent grain (brewing), cottonseed meal (cotton processing), among others. In the past, significant work in exploring the possibility of the utilization of these by-products has been performed. Most by-products are highly nutritious and can be excellent low-cost sources of dietary fiber, proteins, and bioactive compounds such as polyphenols, antioxidants, and vitamins. The amount of energy utilized for the disposal of these materials is far less than the energy required for the purification of these materials for valorization. Thus, in many cases, these materials go to waste or landfill. Studies have been conducted to incorporate the by-products into different foods in order to promote their utilization and tackle their environmental impacts. Extrusion processing can be an excellent avenue for the utilization of these by-products in foods. Extrusion is a widely used thermo-mechanical process due to its versatility, flexibility, high production rate, low cost, and energy efficiency. Extruded products such as direct-expanded products, breakfast cereals, and pasta have been developed by researchers using agricultural by-products. The different by-products have a wide range of characteristics in terms of chemical composition and functional properties, affecting the final products in extrusion processing. For the practical applications of these by-products in extrusion, it is crucial to understand their impacts on the qualities of raw material blends and extruded products. This review summarizes the general differences in the properties of food by-products from different sources (proximate compositions, physicochemical properties, and functional properties) and how these properties and the extrusion processing conditions influence the product characteristics. The discussion of the by-product properties and their impacts on the extrudates and their nutritional profile can be useful for food manufacturers and researchers to expand their applications. The gaps in the literature have been highlighted for further research and better utilization of by-products with extrusion processing.


2020 ◽  
Vol 104 (20) ◽  
pp. 8567-8594 ◽  
Author(s):  
Martina Cappelletti ◽  
Alessandro Presentato ◽  
Elena Piacenza ◽  
Andrea Firrincieli ◽  
Raymond J. Turner ◽  
...  

Abstract Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production of compounds with environmental, industrial, and medical relevance such as biosurfactants, bioflocculants, carotenoids, triacylglycerols, polyhydroxyalkanoate, siderophores, antimicrobials, and metal-based nanostructures. These biosynthetic capacities can also be exploited to obtain high value-added products from low-cost substrates (industrial wastes and contaminants), offering the possibility to efficiently recover valuable resources and providing possible waste disposal solutions. Rhodococcus spp. strains have also recently been pointed out as a source of novel bioactive molecules highlighting the need to extend the knowledge on biosynthetic capacities of members of this genus and their potential utilization in the framework of bioeconomy. Key points • Rhodococcus possesses promising biosynthetic and bioconversion capacities. • Rhodococcus bioconversion capacities can provide waste disposal solutions. • Rhodococcus bioproducts have environmental, industrial, and medical relevance.


2021 ◽  
Author(s):  
Hamidreza Iranpour ◽  
Hossein Shahsavarani ◽  
Seyed Nezamedin Hosseini ◽  
Hani Hosseini Far ◽  
Sareh Zhand ◽  
...  

Abstract Bio-adhesives play a pivotal role in a wide range of medical applications. However, there are some problems about their application in varied pH values and low adhesion force under wet conditions. Here, we report new recombinant fusion protein achieved by mussel foot proteins (Mfps) of Mytilus Californianus and gas vesicle protein A (GvpA) of Anabaena flos-aquae by genetic engineering methods. These chimeric proteins self-assembled into ß-sheet rich fibres because of GvpA amyloid structure. Also, their adhesion forces were significantly increased especially in alkaline environment based on Mfp-3 and Mfp-5. This study illustrates that copolymer of Mfp-5-GvpA:GvpA-Mfp-3 can be used as an underwater sturdy adhesive with tolerance to auto-oxidation, especially at basic conditions.


2022 ◽  
Vol 34 (2) ◽  
pp. 453-458
Author(s):  
Lakhvinder Kaur ◽  
Shachi Shah

Fruits and vegetables have the highest wastage rates of 45% of any food. One of the recent research areas is food waste valorization as a potential alternative to the disposal of a wide range of organic waste using microorganisms as one of the strategies known as microbial valorization. Bacterial cellulose is best known microbial valorization product because of its low cost, environmentally friendly nature, renewability, nanoscale dimensions, biocompatibility and extremely high hydrophilicity. Therefore, present study focuses on the isolation, characterization and identification of cellulose producing bacteria from decaying apple waste. Cellulose producers were isolated from decaying apple waste. The bacterial isolates obtained were identified through the morphological biochemical, physiological and molecular identification. The bacterial isolates exhibited potential remediation options to biovalorize decaying fruit waste by producing value added products as well as in safe disposal of waste.


1994 ◽  
Vol 27 (4) ◽  
pp. 483-488
Author(s):  
J.M. Pastor ◽  
C. Balaguer ◽  
A. García ◽  
L.F. Peñin ◽  
F.J. Rodriguez ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1853
Author(s):  
Horacio Rostro-Gonzalez ◽  
Jesus Pablo Lauterio-Cruz ◽  
Olivier Pottiez

In this paper, we propose a novel approach for implementing spiking neurons through an optical system. Spiking neurons are a new approach to emulate the neural processes that occur in the brain, known as the third generation of artificial neural networks. They have been successfully used to build a new technology called neuromorphic engineering, which looks for a better performance than traditional computing in tasks usually performed by AI-based systems. Our optical system consists of a low-cost laser source, based on a microcontroller and a continuous-wave laser diode; the microcontroller allows producing synchronous or asynchronous pulses with complex time profiles. Here, through said system we have successfully reproduced most of the neural dynamics observed in biological neurons. These dynamics have been reproduced using a very simple optical array with a great potential for the development of neuromorphic systems. The optical system has been experimentally validated.


2014 ◽  
Vol 852 ◽  
pp. 36-39
Author(s):  
Qun Shan Liu ◽  
Jun Xia Yan

By using scrap miscellaneouszinc materialas raw materials, a new technology with the help of two distillationsby fire method to produce zinc oxide was invented.The scrap miscellaneous zinc materialshave complex sources, containing dust, stone, iron and steel parts and other impurities, and zinc content is more than 15% over a wide range. The presence of zinc is in the form of pure metallic state, alloy state and oxidation state.Distillation process has two steps, the primary for removing the principal impurities and the second for zinc oxide purification. With less investment, low cost, simple equipment, easy operation, environmental protection and other advantages, this method is fit for production of high-purity zinc oxide and can also be used for the production of nanoscale high purity zinc oxide.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1090
Author(s):  
Teresa Lopes da Silva ◽  
Patrícia Moniz ◽  
Carla Silva ◽  
Alberto Reis

In the last few decades, microalgae have attracted attention from the scientific community worldwide, being considered a promising feedstock for renewable energy production, as well as for a wide range of high value-added products such as pigments and poly-unsaturated fatty acids for pharmaceutical, nutraceutical, food, and cosmetic markets. Despite the investments in microalgae biotechnology to date, the major obstacle to its wide commercialization is the high cost of microalgal biomass production and expensive product extraction steps. One way to reduce the microalgae production costs is the use of low-cost feedstock for microalgae production. Some wastes contain organic and inorganic components that may serve as nutrients for algal growth, decreasing the culture media cost and, thus, the overall process costs. Most of the research studies on microalgae waste treatment use autotrophic and mixotrophic microalgae growth. Research on heterotrophic microalgae to treat wastes is still scarce, although this cultivation mode shows several benefits over the others, such as higher organic carbon load tolerance, intracellular products production, and stability in production all year round, regardless of the location and climate. In this review article, the use of heterotrophic microalgae to simultaneously treat wastes and produce high value-added bioproducts and biofuels will be discussed, critically analyzing the most recent research done in this area so far and envisioning the use of this approach to a commercial scale in the near future.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 1-36
Author(s):  
John Moore ◽  
Jared Pettit ◽  
David Young ◽  
Alman Law

The 3DIC market has been investigated for several years. As many companies investigate this business, more is understood about the challenges and cost. All existing commercial technologies use a spin-on adhesive applied to the device wafer, is bonded to a carrier, and after processing, de-bonded by widely different practices. One of the leading technologies is WaferBond(TM), a rubber-based adhesive, supplied by Brewer-Science, Inc. (BSI). In 2005, this technology was developed by Daetec as one of their first technology transfers. Daetec has developed numerous temporary bonding systems, including a rosin and a silicone, sold under the trade name GenTak(TM) for General Chemical. [1] At this year's 2013 Semicon- West gathering, a panel of global experts from KMPG, IMEC, Sematech, CEA-Leti, and CNSE were asked to identify the semiconductor industry's greatest technical challenges. [2] Next to lithography, these experts believed the top challenge is to reduce the barriers to 3DIC. Such barriers include: high cost, poor yield, and poor throughput. When only a few companies can afford 3DIC, progress is slow and growth towards >2 integration levels is pushed to the future. Daetec has developed a new technology, DaeBond 3DTM, allowing carrier de-bond to occur in a batch process and while thinned wafers are affixed to film frames (Fig. 1). Many other benefits exist and will be presented at the show.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Sign in / Sign up

Export Citation Format

Share Document