scholarly journals On the kinematic design of anthropomorphic lower limb exoskeletons and their matching movement

2019 ◽  
Vol 16 (5) ◽  
pp. 172988141987590 ◽  
Author(s):  
Bin Ren ◽  
Jianwei Liu ◽  
Xurong Luo ◽  
Jiayu Chen

The lower limb exoskeleton is a wearable device for assisting medical rehabilitation. A classical lower limb exoskeleton structures cannot precisely match the kinematics of the wearer’s limbs and joints in movement, so a novel anthropomorphic lower limb exoskeleton based on series–parallel mechanism is proposed in this article. Then, the human lower limb movements are measured by an optical gait capture system. Comparing the simulation results of the series–parallel mechanism with the measured human data, the kinematics matching model at the hip joint is established. The results show that the kinematic matching errors in the X, Y, and Z directions are less than 2 mm. So, the proposed kinematics matching model is effective and the anthropomorphic series–parallel mechanism has a significant improvement in tracing the human positions at the hip joint.

2021 ◽  
pp. 91-97
Author(s):  
E. A. Kotov ◽  
◽  
A. D. Druk ◽  
D. N. Klypin ◽  
◽  
...  

The article deals with the solution of the problem of optimizing the characteristics of controlled motion of human lower limb exoskeleton robot for improving medical rehabilitation. The aim of the work is to develop a rehabilitation device capable of providing controlled motion in two planes, as well as maintaining balance without loss of mobility. The design and control system of a rehabilitation trainer designed for performing mechanotherapy of the lower limbs of patients with locomotive disorders are proposed and characterized. The developed system has a number of significant differences from analogues and can be recommended for experimental research on patients with impaired locomotive functions


Author(s):  
Riska Analia ◽  
Joshua Ferdinand M. ◽  
Susanto ◽  
P. Daniel Sutopo ◽  
Hendawan Soebhakti ◽  
...  

Author(s):  
Riska Analia ◽  
Jan Hong ◽  
Susanto ◽  
P Daniel Sutopo ◽  
Hendawan Soebhakti ◽  
...  

2013 ◽  
Vol 655-657 ◽  
pp. 1033-1037
Author(s):  
Ping Zhou ◽  
Qiang Wang ◽  
Li Ping Song ◽  
Shi De Zhang

Studying the hip, a new type of parallel mechanism with three branches and 2DOF, 2-PSS/U asymmetric is proposed, which is based on the analysis of structural features of the human lower limb hip joint and the importance of human lower limb. A hip rehabilitation institutions, combined with Parallel Mechanism and electric machinery, is used for rehabilitation training. Calculating the degree of freedom of mechanism, verifying its degree of accuracy by means of screw theory, the Mechanism's forward position is evaluated, velocity analysis is made based on screw theory on the mechanism.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4037
Author(s):  
Junghwan Yun ◽  
Ohhyun Kang ◽  
Hyun-Min Joe

This paper proposes a device that can change the payload of an unpowered lower-limb exoskeleton supporting the weights of humans and loads. Our previous exoskeletons used a cam–follower structure with a spring applied to the hip joint. This exoskeleton showed satisfying performance within the payload; however, the performance decreased when the payload was exceeded. Therefore, a payload adjustment device that can adjust the wearer’s required torque by easily applying it to the cam–follower structure was developed. An exoskeleton dynamic equation that can calculate a person’s required joint torque given the required payload and the wearer’s posture was derived. This dynamic equation provides a guideline for designing a device that can adjust the allowable joint torque range of an unpowered exoskeleton. In the Adams simulation environment, the payload adjustment device is applied to the cam–follower structure to show that the payload of the exoskeleton can be changed. User convenience and mass production were taken into account in the design of this device. This payload adjustment device should flexibly change the payload of the level desired by the wearer because it can quickly change the payload of the exoskeleton.


Author(s):  
Jyotindra Narayan ◽  
Santosha Kumar Dwivedy

In this work, the design, modeling, and development of a low-cost lower limb exoskeleton (LLES) system are presented for paediatric rehabilitation (age: 8–12 years, mass: 25–40 kg, height: 115–125 cm). The exoskeleton system, having three degrees-of-freedom (DOFs) for each limb, is designed in the SolidWorks software. A wheel support module is introduced in the design to ensure the user’s stability and safety. The finite element analysis of the hip joint connector along with the wheel support module is realized for maximum loading conditions. The holding torque capacity of exoskeleton joints is estimated using an affordable spring-based experimental setup. A working prototype of the LLES is developed with holding torque rated actuators. Thereafter, the dynamic analysis for the human-exoskeleton coupled system is carried out using the Euler-Lagrange principle and SimMechanics model. The simulation results of estimating joint actuator torques are obtained for two paraplegic subjects (Case I: 10 years age, 30 kg mass, 120 cm height and Case II: 12 years age, 40 kg mass, 125 cm height). The details of input parameters such as body mass, link lengths, joint angles, and contact forces are discussed. The simulation results of dynamic analysis have shown the potential of estimating the torques of joint actuators for the developed prototype during motion assistance and gait rehabilitation.


Author(s):  
Wilian dos Santos ◽  
Samuel Lourenco ◽  
Adriano Siqueira ◽  
Polyana Ferreira Nunes

Sign in / Sign up

Export Citation Format

Share Document