Vigilance all the way down: Vigilance decrement in jumping spiders resembles that of humans

2018 ◽  
Vol 72 (6) ◽  
pp. 1530-1538 ◽  
Author(s):  
Amber Melrose ◽  
Ximena J Nelson ◽  
Yinnon Dolev ◽  
William S Helton

The inability to maintain signal detection performance with time on task, or vigilance decrement, is widely studied in people. Despite suggestions that limitations in sustained attention may be a fundamental characteristic of animal cognition, there has been limited research on the vigilance decrement in other animals. We conducted two experiments to explore vigilance in jumping spiders. Our first experiment established that the vigilance decrement, decline in signal detections with time on task, occurs in these spiders in laboratory settings. Our second experiment tested whether this phenomenon was simply the result of habituation of sensory receptors by employing two dishabituation manipulations. Neither dishabituation manipulation appeared to have an effect. Thus, the vigilance decrement in spiders appears to be due to something more than simply peripheral sensory habituation. We suggest that limitations in sustained attention may be a widespread phenomenon among animals that needs addressing when theorising about the vigilance decrement.

Author(s):  
Alexis R. Dewar ◽  
Nicholas W. Fraulini ◽  
Victoria L. Claypoole ◽  
James L. Szalma

Vigilance, or sustained attention, is the ability to maintain attention to stimuli over a prolonged period of time. Synonymous with the study of sustained attention is the vigilance decrement, which is a decline in performance as a function of time on task. In the present study, we examined the effects of state motivation (i.e., motivation measured immediately prior to the task) and context-based motivation (i.e., motivation that stems from task instructions) on vigilance performance in a sensory-based vigilance task. Forty-three participants completed a 24-minute vigilance task, as well as measures of stress and workload. The results indicated that those higher in state intrinsic motivation and motivating instructions outperformed their peers in terms of hits and false alarms. We conclude that motivation may help facilitate vigilant attention.


2018 ◽  
Author(s):  
Leon C. Reteig ◽  
Ruud L. van den Brink ◽  
Sam Prinssen ◽  
Michael X Cohen ◽  
Heleen A. Slagter

AbstractOur ability to stay focused is limited: prolonged performance of a task typically results in mental fatigue and decrements in performance over time. This so-called vigilance decrement has been attributed to depletion of attentional resources, though other factors such as reductions in motivation likely also play a role. In this study, we examined three EEG markers of attentional control, to elucidate which stage of attentional processing is most affected by time-on-task and motivation. To elicit the vigilance decrement, participants performed a sustained attention task for 80 minutes without breaks. After 60 minutes, participants were motivated by an unexpected monetary incentive to increase performance in the final 20 minutes. We found that task performance and self-reported motivation declined rapidly, reaching a stable levels well before the motivation manipulation was introduced. Thereafter, motivation increased back up to the initial level, and remained there for the final 20 minutes. While task performance also increased, it did not return to the initial level, and fell to the lowest level overall during the final 10 minutes. This pattern of performance changes was mirrored by the trial-to-trial consistency of the phase of theta (3–7 Hz) oscillations, an index of the variability in timing of the neural response to the stimulus. As task performance decreased, temporal variability increased, suggesting that attentional stability is crucial for sustained attention performance. The effects of attention on our two other EEG measures—early P1/N1 event-related potentials and pre-stimulus alpha (9–14 Hz) power—did not change with time-on-task or motivation. In sum, these findings show that the vigilance decrement is accompanied by a decline in only some facets of attentional control, which cannot be fully brought back online by increases in motivation. The vigilance decrement might thus not occur due to a single cause, but is likely multifactorial in origin.


Author(s):  
Michel Loeb

In a recent article, Craig (1977) has considered the question, first attacked by Broadbent and Gregory (1963), as to the applicability of signal detection theory (SDT) to the vigilance situation, and he has discussed the use of group data by Loeb and Binford (1964) in approaching this same question. In a still more recent article by Craig (1978) it is argued that a probability-matching model is appropriate for explaining the “vigilance decrement” with time on task. Here it is agreed that to a degree SDT may be applied to vigilance and that some matching of response frequency to signal frequency may occur, but it is argued that there are changes within and across sessions which may not be explained in these terms and which may involve learning about the differential characteristics of signal and non-signal stimuli.


2019 ◽  
Author(s):  
Martine R. van Schouwenburg ◽  
Ilja G. Sligte ◽  
Michael R. Giffin ◽  
Franziska Günther ◽  
Dirk Koster ◽  
...  

AbstractSustained attention is defined as the ability to maintain attention over longer periods of time, which typically declines with time on task (i.e., the vigilance decrement). Previous studies have suggested an important role for the dorsomedial prefrontal cortex (mPFC) in sustained attention. In two experiments, we aimed to enhance sustained attention by applying transcranial electrical current stimulation over the mPFC during a sustained attention task. In the first experiment, we applied transcranial direct current stimulation (tDCS) in a between-subject design (n=97): participants received either anodal, cathodal, or sham stimulation. Contrary to our prediction, we found no effect of stimulation on the vigilance decrement. In the second experiment, participants received theta and alpha transcranial alternating current stimulation (tACS) in two separate sessions (n=47, within-subject design). Here, we found a frequency-dependent effect on the vigilance decrement, such that contrary to our expectation, participants’ performance over time became worse after theta compared to alpha stimulation. However, this result needs to be interpreted with caution given that this effect could be driven by differential side effects between the two stimulation frequencies. To conclude, across two studies, we were not able to reduce the vigilant decrement using tDCS or theta tACS.


2004 ◽  
Vol 04 (01) ◽  
pp. L207-L217 ◽  
Author(s):  
HANS A. BRAUN ◽  
KARL VOIGT ◽  
J. CHRISTIAN KRIEG ◽  
MARTIN T. HUBER

In recent years biophysical approaches have had particular impact on the progress in physiological and biological research. In systems biology such progress is often associated with the terms "noise" and "chaos". The introduction of these physically based concepts into life sciences has essentially been promoted by the work of Frank Moss and his group. This paper provides evidence of the physiological relevance of such biophysically based approaches with examples from quite different physiological and pathophysiological functions like temperature transduction in peripheral sensory receptors and the progression of mood disorders. We will use modelling studies, based on experimental and clinical data, to illustrate that both systems can attain specific dynamical states where chaos and/or noise plays an essential role and we will try to describe under which conditions functionally relevant noise effects or chaotic behaviour can be expected.


Author(s):  
Lorraine Borghetti ◽  
Megan B. Morris ◽  
L. Jack Rhodes ◽  
Ashley R. Haubert ◽  
Bella Z. Veksler

Sustained attention is an essential behavior in life, but often leads to performance decrements with time. Computational accounts of sustained attention suggest this is due to brief disruptions in goal-directed processing, or microlapses. Decreases in gamma spectral power are a potential candidate for indexing microlapses and discriminating between low and high performers in sustained attention tasks, while increases in beta, alpha, and theta power are expected to exhibit compensatory effort to offset fatigue. The current study tests these hypotheses in a 10-minute Psychomotor Vigilance Test, a context that eliminates confounds with measuring gamma frequencies. 34 participants ( Mage = 22.60; SDage = 4.08) volunteered in the study. Results suggested frontal gamma power declined with time-on-task, indicating reduction in central cognition. Beta power increased with time-on-task, suggesting compensatory effort; however, alpha and theta power did not increase. Additionally, gamma power discriminated between low and high performers, potentially suggesting motivational differences between the groups.


1996 ◽  
Vol 169 (6) ◽  
pp. 781-789 ◽  
Author(s):  
Corinne M. Mar ◽  
David A. Smith ◽  
Martin Sarter

BackgroundDespite 30 years of research, some surprisingly fundamental gaps remain in our understanding of schizophrenic input dysfunctions.MethodIn a provisional test of a ‘hyperattention’ hypothesis, schizophrenic patients and control subjects performed a behavioural test that was adapted from a paradigm originally developed for characterising vigilance or sustained attention in animals. On this computerised operant testing procedure, subjects discriminated between signals of various salience and non-signal presentations. Hits and correct rejections resulted in monetary rewards while misses and false alarms entailed monetary costs.ResultsData from in-patients with schizophrenia and age, education and gender-matched controls support hypotheses not only about hyperattentional dysfunctions in schizophrenia with respect to overall signal detectability but also in terms of resistance to the vigilance decrement that normally occurs over trials.ConclusionsThe theoretical importance of impairments of this sort are discussed with respect to the cognitive and perceptual consequences of hypervigilance and ‘input dysfunction’.


2020 ◽  
Vol 10 (7) ◽  
pp. 419
Author(s):  
Jari K. Gool ◽  
Ysbrand D. van der Werf ◽  
Gert Jan Lammers ◽  
Rolf Fronczek

Vigilance complaints often occur in people with narcolepsy type 1 and severely impair effective daytime functioning. We tested the feasibility of a three-level sustained attention to response task (SART) paradigm within a magnetic resonance imaging (MRI) environment to understand brain architecture underlying vigilance regulation in individuals with narcolepsy type 1. Twelve medication-free people with narcolepsy type 1 and 11 matched controls were included. The SART included four repetitions of a baseline block and two difficulty levels requiring moderate and high vigilance. Outcome measures were between and within-group performance indices on error rates and reaction times, and functional MRI (fMRI) parameters: mean activity during the task and between-group activity differences across the three conditions and related to changes in activation over time (time-on-task) and error-related activity. Patients—but not controls—made significantly more mistakes with increasing difficulty. The modified SART is a feasible MRI vigilance task showing similar task-positive brain activity in both groups within the cingulo-opercular, frontoparietal, arousal, motor, and visual networks. During blocks of higher vigilance demand, patients had significantly lower activation in these regions than controls. Patients had lower error-related activity in the left pre- and postcentral gyrus. The time-on-task activity differences between groups suggest that those with narcolepsy are insufficiently capable of activating attention- and arousal-related regions when transitioning from attention initiation to stable attention, specifically when vigilance demand is high. They also show lower inhibitory motor activity in relation to errors, suggesting impaired executive functioning.


Author(s):  
Grace McClune ◽  
David Hill

Pain in labour is an issue common to women the world over. Healthcare professionals have an important role in helping women to understand this pain and to make informed choices regarding its management. Pain relief for labour comes in many forms. This chapter explores the theory behind labour pain and then discusses the use of non-pharmacological methods of pain relief (complementary therapies) or systemic analgesia in labour. The non-pharmacological methods described include those that aim to reduce painful stimuli and those that modulate pain sensation by the activation of peripheral sensory receptors or the enhancement of descending inhibitory pathways. Systemic analgesia in labour described in this chapter includes the use of inhalational agents, non-opioid analgesia, and opioid analgesia. The rationale behind the use of each method described is discussed along with evidence regarding the efficacy and limitations where available. Routes of administration and dosing are included where applicable. The potential for maternal or neonatal side effects is highlighted and conclusions drawn for each method as to the implications of the evidence to use in practice.


2019 ◽  
Vol 23 ◽  
pp. 233121651988781 ◽  
Author(s):  
Sijia Zhao ◽  
Gabriela Bury ◽  
Alice Milne ◽  
Maria Chait

The ability to sustain attention on a task-relevant sound source while avoiding distraction from concurrent sounds is fundamental to listening in crowded environments. We aimed to (a) devise an experimental paradigm with which this aspect of listening can be isolated and (b) evaluate the applicability of pupillometry as an objective measure of sustained attention in young and older populations. We designed a paradigm that continuously measured behavioral responses and pupillometry during 25-s trials. Stimuli contained a number of concurrent, spectrally distinct tone streams. On each trial, participants detected gaps in one of the streams while resisting distraction from the others. Behavior demonstrated increasing difficulty with time-on-task and with number/proximity of distractor streams. In young listeners ( N = 20; aged 18 to 35 years), pupil diameter (on the group and individual level) was dynamically modulated by instantaneous task difficulty: Periods where behavioral performance revealed a strain on sustained attention were accompanied by increased pupil diameter. Only trials on which participants performed successfully were included in the pupillometry analysis so that the observed effects reflect task demands as opposed to failure to attend. In line with existing reports, we observed global changes to pupil dynamics in the older group ( N = 19; aged 63 to 79 years) including decreased pupil diameter, limited dilation range, and reduced temporal variability. However, despite these changes, older listeners showed similar effects of attentive tracking to those observed in the young listeners. Overall, our results demonstrate that pupillometry can be a reliable and time-sensitive measure of attentive tracking over long durations in both young and (with caveats) older listeners.


Sign in / Sign up

Export Citation Format

Share Document