Hierarchical Brain Systems Support Multiple Representations of Valence and Mixed Affect

2017 ◽  
Vol 9 (2) ◽  
pp. 124-132 ◽  
Author(s):  
Vincent Man ◽  
Hannah U. Nohlen ◽  
Hans Melo ◽  
William A. Cunningham

We review the psychological literature on the organization of valence, discussing theoretical perspectives that favor a single dimension of valence, multiple valence dimensions, and positivity and negativity as dynamic and flexible properties of mental experience that are contingent upon context. Turning to the neuroscience literature that spans three levels of analysis, we discuss how positivity and negativity can be represented in the brain. We show that the evidence points toward both separable and overlapping brain systems that support affective processes depending on the level of resolution studied. We move from large-scale brain networks that underlie generalized processing, to functionally specific subcircuits, finally to intraregional neuronal distributions, where the organization and interaction across levels allow for multiple types of valence and mixed evaluations.

2018 ◽  
Vol 29 (05) ◽  
pp. 1840007
Author(s):  
Huijun Wu ◽  
Hao Wang ◽  
Linyuan Lü

Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power–law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.


2020 ◽  
Author(s):  
Pesoli Matteo ◽  
Rucco Rosaria ◽  
Liparoti Marianna ◽  
Lardone Anna ◽  
D’Aurizio Giula ◽  
...  

AbstractThe topology of brain networks changes according to environmental demands and can be described within the framework of graph theory. We hypothesized that 24-hours long sleep deprivation (SD) causes functional rearrangements of the brain topology so as to impair optimal communication, and that such rearrangements relate to the performance in specific cognitive tasks, namely the ones specifically requiring attention. Thirty-two young men underwent resting-state MEG recording and assessments of attention and switching abilities before and after SD. We found loss of integration of brain network and a worsening of attention but not of switching abilities. These results show that brain network changes due to SD affect switching abilities, worsened attention and induce large-scale rearrangements in the functional networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wein ◽  
W. M. Malloni ◽  
A. M. Tomé ◽  
S. M. Frank ◽  
G. -I. Henze ◽  
...  

AbstractA central question in neuroscience is how self-organizing dynamic interactions in the brain emerge on their relatively static structural backbone. Due to the complexity of spatial and temporal dependencies between different brain areas, fully comprehending the interplay between structure and function is still challenging and an area of intense research. In this paper we present a graph neural network (GNN) framework, to describe functional interactions based on the structural anatomical layout. A GNN allows us to process graph-structured spatio-temporal signals, providing a possibility to combine structural information derived from diffusion tensor imaging (DTI) with temporal neural activity profiles, like that observed in functional magnetic resonance imaging (fMRI). Moreover, dynamic interactions between different brain regions discovered by this data-driven approach can provide a multi-modal measure of causal connectivity strength. We assess the proposed model’s accuracy by evaluating its capabilities to replicate empirically observed neural activation profiles, and compare the performance to those of a vector auto regression (VAR), like that typically used in Granger causality. We show that GNNs are able to capture long-term dependencies in data and also computationally scale up to the analysis of large-scale networks. Finally we confirm that features learned by a GNN can generalize across MRI scanner types and acquisition protocols, by demonstrating that the performance on small datasets can be improved by pre-training the GNN on data from an earlier study. We conclude that the proposed multi-modal GNN framework can provide a novel perspective on the structure-function relationship in the brain. Accordingly this approach appears to be promising for the characterization of the information flow in brain networks.


2021 ◽  
pp. 1-23
Author(s):  
Enrico Amico ◽  
Kausar Abbas ◽  
Duy Anh Duong-Tran ◽  
Uttara Tipnis ◽  
Meenusree Rajapandian ◽  
...  

Modeling communication dynamics in the brain is a key challenge in network neuroscience. We present here a framework that combines two measurements for any system where different communication processes are taking place on top of a fixed structural topology: Path Processing Score (PPS) estimates how much the brain signal has changed or has been transformed between any two brain regions (source and target); Path Broadcasting Strength (PBS) estimates the propagation of the signal through edges adjacent to the path being assessed. We use PPS and PBS to explore communication dynamics in large-scale brain networks. We show that brain communication dynamics can be divided into three main “communication regimes” of information transfer: absent communication (no communication happening); relay communication (information is being transferred almost intact); transducted communication (the information is being transformed). We use PBS to categorize brain regions based on the way they broadcast information. Subcortical regions are mainly direct broadcasters to multiple receivers; Temporal and frontal nodes mainly operate as broadcast relay brain stations; Visual and somato-motor cortices act as multi-channel transducted broadcasters. This work paves the way towards the field of brain network information theory by providing a principled methodology to explore communication dynamics in large-scale brain networks.


2019 ◽  
Vol 42 ◽  
Author(s):  
Luiz Pessoa

AbstractUnderstanding how structure maps to function in the brain in terms of large-scale networks is critical to elucidating the brain basis of mental phenomena and mental disorders. Given that this mapping is many-to-many, I argue that researchers need to shift to a multivariate brain and behavior characterization to fully unravel the contributions of brain processes to typical and atypical function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjun Jia ◽  
Frederic von Wegner ◽  
Mengting Zhao ◽  
Yong Zeng

AbstractDesign is a ubiquitous, complex, and open-ended creation behaviour that triggers creativity. The brain dynamics underlying design is unclear, since a design process consists of many basic cognitive behaviours, such as problem understanding, idea generation, idea analysis, idea evaluation, and idea evolution. In this present study, we simulated the design process in a loosely controlled setting, aiming to quantify the design-related cognitive workload and control, identify EEG-defined large-scale brain networks, and uncover their temporal dynamics. The effectiveness of this loosely controlled setting was tested through comparing the results with validated findings available in the literature. Task-related power (TRP) analysis of delta, theta, alpha and beta frequency bands revealed that idea generation was associated with the highest cognitive workload and lowest cognitive control, compared to other design activities in the experiment, including problem understanding, idea evaluation, and self-rating. EEG microstate analysis supported this finding as microstate class C, being negatively associated with the cognitive control network, was the most prevalent in idea generation. Furthermore, EEG microstate sequence analysis demonstrated that idea generation was consistently associated with the shortest temporal correlation times concerning finite entropy rate, autoinformation function, and Hurst exponent. This finding suggests that during idea generation the interplay of functional brain networks is less restricted and the brain has more degrees of freedom in choosing the next network configuration than during other design activities. Taken together, the TRP and EEG microstate results lead to the conclusion that idea generation is associated with the highest cognitive workload and lowest cognitive control during open-ended creation task.


2011 ◽  
Vol 21 (1) ◽  
pp. 5-14
Author(s):  
Christy L. Ludlow

The premise of this article is that increased understanding of the brain bases for normal speech and voice behavior will provide a sound foundation for developing therapeutic approaches to establish or re-establish these functions. The neural substrates involved in speech/voice behaviors, the types of muscle patterning for speech and voice, the brain networks involved and their regulation, and how they can be externally modulated for improving function will be addressed.


Sign in / Sign up

Export Citation Format

Share Document