scholarly journals Network oscillations imply the highest cognitive workload and lowest cognitive control during idea generation in open-ended creation tasks

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjun Jia ◽  
Frederic von Wegner ◽  
Mengting Zhao ◽  
Yong Zeng

AbstractDesign is a ubiquitous, complex, and open-ended creation behaviour that triggers creativity. The brain dynamics underlying design is unclear, since a design process consists of many basic cognitive behaviours, such as problem understanding, idea generation, idea analysis, idea evaluation, and idea evolution. In this present study, we simulated the design process in a loosely controlled setting, aiming to quantify the design-related cognitive workload and control, identify EEG-defined large-scale brain networks, and uncover their temporal dynamics. The effectiveness of this loosely controlled setting was tested through comparing the results with validated findings available in the literature. Task-related power (TRP) analysis of delta, theta, alpha and beta frequency bands revealed that idea generation was associated with the highest cognitive workload and lowest cognitive control, compared to other design activities in the experiment, including problem understanding, idea evaluation, and self-rating. EEG microstate analysis supported this finding as microstate class C, being negatively associated with the cognitive control network, was the most prevalent in idea generation. Furthermore, EEG microstate sequence analysis demonstrated that idea generation was consistently associated with the shortest temporal correlation times concerning finite entropy rate, autoinformation function, and Hurst exponent. This finding suggests that during idea generation the interplay of functional brain networks is less restricted and the brain has more degrees of freedom in choosing the next network configuration than during other design activities. Taken together, the TRP and EEG microstate results lead to the conclusion that idea generation is associated with the highest cognitive workload and lowest cognitive control during open-ended creation task.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aurélie Bochet ◽  
Holger Franz Sperdin ◽  
Tonia Anahi Rihs ◽  
Nada Kojovic ◽  
Martina Franchini ◽  
...  

AbstractAutism spectrum disorders (ASD) are associated with disruption of large-scale brain network. Recently, we found that directed functional connectivity alterations of social brain networks are a core component of atypical brain development at early developmental stages in ASD. Here, we investigated the spatio-temporal dynamics of whole-brain neuronal networks at a subsecond scale in 113 toddlers and preschoolers (66 with ASD) using an EEG microstate approach. We first determined the predominant microstates using established clustering methods. We identified five predominant microstate (labeled as microstate classes A–E) with significant differences in the temporal dynamics of microstate class B between the groups in terms of increased appearance and prolonged duration. Using Markov chains, we found differences in the dynamic syntax between several maps in toddlers and preschoolers with ASD compared to their TD peers. Finally, exploratory analysis of brain–behavioral relationships within the ASD group suggested that the temporal dynamics of some maps were related to conditions comorbid to ASD during early developmental stages.


2017 ◽  
Vol 114 (48) ◽  
pp. 12827-12832 ◽  
Author(s):  
Diego Vidaurre ◽  
Stephen M. Smith ◽  
Mark W. Woolrich

The brain recruits neuronal populations in a temporally coordinated manner in task and at rest. However, the extent to which large-scale networks exhibit their own organized temporal dynamics is unclear. We use an approach designed to find repeating network patterns in whole-brain resting fMRI data, where networks are defined as graphs of interacting brain areas. We find that the transitions between networks are nonrandom, with certain networks more likely to occur after others. Further, this nonrandom sequencing is itself hierarchically organized, revealing two distinct sets of networks, or metastates, that the brain has a tendency to cycle within. One metastate is associated with sensory and motor regions, and the other involves areas related to higher order cognition. Moreover, we find that the proportion of time that a subject spends in each brain network and metastate is a consistent subject-specific measure, is heritable, and shows a significant relationship with cognitive traits.


2011 ◽  
Vol 33 (5) ◽  
pp. 1089-1106 ◽  
Author(s):  
Luca Cocchi ◽  
Ben J Harrison ◽  
Jesus Pujol ◽  
Ian H Harding ◽  
Alex Fornito ◽  
...  

2018 ◽  
Vol 29 (05) ◽  
pp. 1840007
Author(s):  
Huijun Wu ◽  
Hao Wang ◽  
Linyuan Lü

Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power–law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.


2020 ◽  
Author(s):  
Pesoli Matteo ◽  
Rucco Rosaria ◽  
Liparoti Marianna ◽  
Lardone Anna ◽  
D’Aurizio Giula ◽  
...  

AbstractThe topology of brain networks changes according to environmental demands and can be described within the framework of graph theory. We hypothesized that 24-hours long sleep deprivation (SD) causes functional rearrangements of the brain topology so as to impair optimal communication, and that such rearrangements relate to the performance in specific cognitive tasks, namely the ones specifically requiring attention. Thirty-two young men underwent resting-state MEG recording and assessments of attention and switching abilities before and after SD. We found loss of integration of brain network and a worsening of attention but not of switching abilities. These results show that brain network changes due to SD affect switching abilities, worsened attention and induce large-scale rearrangements in the functional networks.


2017 ◽  
Author(s):  
Douglas H. Schultz ◽  
Takuya Ito ◽  
Levi I. Solomyak ◽  
Richard H. Chen ◽  
Ravi D. Mill ◽  
...  

ABSTRACTWe all vary in our mental health, even among people not meeting diagnostic criteria for mental illness. Understanding this individual variability may reveal factors driving the risk for mental illness, as well as factors driving sub-clinical problems that still adversely affect quality of life. To better understand the large-scale brain network mechanisms underlying this variability we examined the relationship between mental health symptoms and resting-state functional connectivity patterns in cognitive control systems. One such system is the frontoparietal cognitive control network (FPN). Changes in FPN connectivity may impact mental health by disrupting the ability to regulate symptoms in a goal-directed manner. Here we test the hypothesis that FPN dysconnectivity relates to mental health symptoms even among individuals who do not meet formal diagnostic criteria but may exhibit meaningful symptom variation. We found that depression symptoms severity negatively correlated with between-network global connectivity (BGC) of the FPN. This suggests that decreased connectivity between the FPN and the rest of the brain is related to increased depression symptoms in the general population. These findings complement previous clinical studies to support the hypothesis that global FPN connectivity contributes to the regulation of mental health symptoms across both health and disease.AUTHOR SUMMARYUnderstanding how large-scale network interactions in the brain contribute to (or serve a protective role against) mental health symptoms is an important step toward developing more effective mental health treatments. Here we test the hypothesis that cognitive control networks play an important role in mental health by being highly connected to other brain networks and able to serve as a feedback mechanism capable of regulating symptoms in a goal-directed manner. We found that the more well-connected the frontoparietal cognitive control network was to other networks in the brain the less depression symptoms were reported by participants. These results contribute to our understanding of how brain network interactions are related to mental health symptoms, even in individuals who have not been diagnosed with a disorder.


2017 ◽  
Author(s):  
Cameron Parro ◽  
Matthew L Dixon ◽  
Kalina Christoff

AbstractCognitive control mechanisms support the deliberate regulation of thought and behavior based on current goals. Recent work suggests that motivational incentives improve cognitive control, and has begun to elucidate the brain regions that may support this effect. Here, we conducted a quantitative meta-analysis of neuroimaging studies of motivated cognitive control using activation likelihood estimation (ALE) and Neurosynth in order to delineate the brain regions that are consistently activated across studies. The analysis included functional neuroimaging studies that investigated changes in brain activation during cognitive control tasks when reward incentives were present versus absent. The ALE analysis revealed consistent recruitment in regions associated with the frontoparietal control network including the inferior frontal sulcus (IFS) and intraparietal sulcus (IPS), as well as consistent recruitment in regions associated with the salience network including the anterior insula and anterior mid-cingulate cortex (aMCC). A large-scale exploratory meta-analysis using Neurosynth replicated the ALE results, and also identified the caudate nucleus, nucleus accumbens, medial thalamus, inferior frontal junction/premotor cortex (IFJ/PMC), and hippocampus. Finally, we conducted separate ALE analyses to compare recruitment during cue and target periods, which tap into proactive engagement of rule-outcome associations, and the mobilization of appropriate viscero-motor states to execute a response, respectively. We found that largely distinct sets of brain regions are recruited during cue and target periods. Altogether, these findings suggest that flexible interactions between frontoparietal, salience, and dopaminergic midbrain-striatal networks may allow control demands to be precisely tailored based on expected value.


Author(s):  
Mohammad Alsager Alzayed ◽  
Scarlett R. Miller ◽  
Jessica Menold ◽  
Jacquelyn Huff ◽  
Christopher McComb

Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has been invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes in the concept generation and selection stages of the design process. Therefore, the goal of the current study was to investigate the impact of team trait empathy on concept generation and selection in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique drawing upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicate that the elevation in team empathy positively impacted simulated teams’ unique idea generation and selection while the diversity in team empathy positively impacted teams’ generation of useful ideas. The results from this study can be used to guide team formation in engineering design.


2019 ◽  
Vol 30 (1) ◽  
pp. 241-255 ◽  
Author(s):  
Niels Janssen ◽  
Cristian Camilo Rincón Mendieta

Abstract Holding a conversation means that speech must be started, maintained, and stopped continuously. The brain networks that underlie these aspects of speech motor control remain poorly understood. Here we collected functional magnetic resonance imaging (fMRI) data while participants produced normal and fast rate speech in response to sequences of visually presented objects. We took a non-conventional approach to fMRI data analysis that allowed us to study speech motor behavior as it unfolded over time. To this end, whole-brain fMRI signals were extracted in stimulus-locked epochs using slice-based fMRI. These data were then subjected to group independent component analysis to discover spatially independent networks that were associated with different temporal activation profiles. The results revealed two basic brain networks with different temporal dynamics: a cortical network that was activated continuously during speech production, and a second cortico-subcortical network that increased in activity during the initiation and suppression of speech production. Additional analyses explored whether key areas involved in motor suppression such as the right inferior frontal gyrus, sub-thalamic nucleus and pre-supplementary motor area provide first-order signals to stop speech. The results reveal for the first time the brain networks associated with the initiation, maintenance, and suppression of speech motor behavior.


Author(s):  
Jacquelyn K. S. Nagel ◽  
Robert B. Stone ◽  
Daniel A. McAdams

Engineering design is considered a creative field that involves many activities with the end goal of a new product that fulfills a purpose. Utilization of systematic methods or tools that aid in the design process is recognized as standard practice in industry and academia. The tools are used for a number of design activities (i.e., idea generation, concept generation, inspiration searches, functional modeling) and can span across engineering disciplines, the sciences (i.e., biology, chemistry) or a non-engineering domain (i.e., medicine), with an overall focus of encouraging creative engineering designs. Engineers, however, have struggled with utilizing the vast amount of biological information available from the natural world around them. Often it is because there is a knowledge gap or terminology is difficult, and the time needed to learn and understand the biology is not feasible. This paper presents an engineering-to-biology thesaurus, which we propose affords engineers, with limited biological background, a tool for leveraging nature’s ingenuity during many steps of the design process. Additionally, the tool could also increase the probability of designing biologically-inspired engineering solutions. Biological terms in the thesaurus are correlated to the engineering domain through pairing with a synonymous function or flow term of the Functional Basis lexicon, which supports functional modeling and abstract representation of any functioning system. The second version of the thesaurus presented in this paper represents an integration of three independent research efforts, which include research from Oregon State University, the University of Toronto, and the Indian Institute of Science, and their industrial partners. The overall approach for term integration and the final results are presented. Applications to the areas of design inspiration, comprehension of biological information, functional modeling, creative design and concept generation are discussed. An example of comprehension and functional modeling are presented.


Sign in / Sign up

Export Citation Format

Share Document