scholarly journals Spatiotemporal dynamics during the transition to thermoacoustic instability: Effect of varying turbulence intensities

2018 ◽  
Vol 10 (4) ◽  
pp. 337-350 ◽  
Author(s):  
Nitin B George ◽  
Vishnu R Unni ◽  
Manikandan Raghunathan ◽  
RI Sujith

An experimental study on a turbulent, swirl-stabilized backward facing step combustor is conducted to understand the spatiotemporal dynamics during the transition from combustion noise to thermoacoustic instability. By using a turbulence generator, we investigate the change in the spatiotemporal dynamics during this transition for added turbulence intensities. High-speed CH* images of the flame (representative of the field of local heat release rate fluctuations ([Formula: see text]( x, y, t))) and simultaneous unsteady pressure fluctuations ([Formula: see text]( t)) are acquired for different equivalence ratios. In the study, without the turbulence generator, as the equivalence ratio is reduced from near stoichiometric values, we observe an emergence of coherence in the spatial dynamics during the occurrence of intermittency, enroute to thermoacoustic instability. As the turbulence intensity is increased using the turbulence generator, we find that there is an advanced onset of thermoacoustic instability. Spatial statistics and the instantaneous fields of [Formula: see text] show that during the transition from combustion noise to thermoacoustic instability, the emergence of coherent spatial structures in the instantaneous fields of [Formula: see text] for the experiments with higher turbulence intensities is advanced. However, as the equivalence ratio is reduced further, we notice that higher turbulence intensities result in the reduction of the strength of the pressure oscillations during the state of thermoacoustic instability. We find that, at these low equivalence ratios, there is a decrease in the coherence due to the dispersal of [Formula: see text], which explains the reduction in the strength of the pressure oscillations.

2019 ◽  
Vol 874 ◽  
pp. 455-482 ◽  
Author(s):  
Abin Krishnan ◽  
R. I. Sujith ◽  
Norbert Marwan ◽  
Jürgen Kurths

In turbulent combustors, the transition from stable combustion (i.e. combustion noise) to thermoacoustic instability occurs via intermittency. During stable combustion, the acoustic power production happens in a spatially incoherent manner. In contrast, during thermoacoustic instability, the acoustic power production happens in a spatially coherent manner. In the present study, we investigate the spatiotemporal dynamics of acoustic power sources during the intermittency route to thermoacoustic instability using complex network theory. To that end, we perform simultaneous acoustic pressure measurement, high-speed chemiluminescence imaging and particle image velocimetry in a backward-facing step combustor with a bluff body stabilized flame at different equivalence ratios. We examine the spatiotemporal dynamics of acoustic power sources by constructing time-varying spatial networks during the different dynamical states of combustor operation. We show that as the turbulent combustor transits from combustion noise to thermoacoustic instability via intermittency, small fragments of acoustic power sources, observed during combustion noise, nucleate, coalesce and grow in size to form large clusters at the onset of thermoacoustic instability. This nucleation, coalescence and growth of small clusters of acoustic power sources occurs during the growth of pressure oscillations during intermittency. In contrast, during the decay of pressure oscillations during intermittency, these large clusters of acoustic power sources disintegrate into small ones. We use network measures such as the link density, the number of components and the size of the largest component to quantify the spatiotemporal dynamics of acoustic power sources as the turbulent combustor transits from combustion noise to thermoacoustic instability via intermittency.


2016 ◽  
Vol 811 ◽  
pp. 659-681 ◽  
Author(s):  
Sirshendu Mondal ◽  
Vishnu R. Unni ◽  
R. I. Sujith

Thermoacoustic systems with a turbulent reactive flow, prevalent in the fields of power and propulsion, are highly susceptible to oscillatory instabilities. Recent studies showed that such systems transition from combustion noise to thermoacoustic instability through a dynamical state known as intermittency, where bursts of large-amplitude periodic oscillations appear in a near-random fashion in between regions of low-amplitude aperiodic fluctuations. However, as these analyses were in the temporal domain, this transition remains still unexplored spatiotemporally. Here, we present the spatiotemporal dynamics during the transition from combustion noise to limit cycle oscillations in a turbulent bluff-body stabilized combustor. To that end, we acquire the pressure oscillations and the field of heat release rate oscillations through high-speed chemiluminescence ($CH^{\ast }$) images of the reaction zone. With a view to get an insight into this complex dynamics, we compute the instantaneous phases between acoustic pressure and local heat release rate oscillations. We observe that the aperiodic oscillations during combustion noise are phase asynchronous, while the large-amplitude periodic oscillations seen during thermoacoustic instability are phase synchronous. We find something interesting during intermittency: patches of synchronized periodic oscillations and desynchronized aperiodic oscillations coexist in the reaction zone. In other words, the emergence of order from disorder happens through a dynamical state wherein regions of order and disorder coexist, resembling a chimera state. Generally, mutually coupled chaotic oscillators synchronize but retain their dynamical nature; the same is true for coupled periodic oscillators. In contrast, during intermittency, we find that patches of desynchronized aperiodic oscillations turn into patches of synchronized periodic oscillations and vice versa. Therefore, the dynamics of local heat release rate oscillations change from aperiodic to periodic as they synchronize intermittently. The temporal variations in global synchrony, estimated through the Kuramoto order parameter, echoes the breathing nature of a chimera state.


2015 ◽  
Vol 772 ◽  
pp. 225-245 ◽  
Author(s):  
Meenatchidevi Murugesan ◽  
R. I. Sujith

We investigate the scale invariance of combustion noise generated from turbulent reacting flows in a confined environment using complex networks. The time series data of unsteady pressure, which is the indicative of spatiotemporal changes happening in the combustor, is converted into complex networks using the visibility algorithm. We show that the complex networks obtained from the low-amplitude, aperiodic pressure fluctuations during combustion noise have scale-free structure. The power-law distributions of connections in the scale-free network are related to the scale invariance of combustion noise. We also show that the scale-free feature of combustion noise disappears and order emerges in the complex network topology during the transition from combustion noise to combustion instability. The use of complex networks enables us to formalize the identification of the pattern (i.e. scale-free to order) during the transition from combustion noise to thermoacoustic instability as a structural change in topology of the network.


Author(s):  
John Strollo ◽  
Stephen Peluso ◽  
Jacqueline O'Connor

Abstract This paper examines the effects of steady-state and transient hydrogen enrichment on thermoacoustic instability in a model gas turbine combustor. Measurements of combustor chamber pressure fluctuations and CH* chemiluminescence imaging are used to characterize instability at a range of operating conditions. Steady-state tests show that both mixture heat rate and hydrogen content affect system stability. At a given heat rate, higher levels of hydrogen result in unstable combustion. As heat rate increases, instability occurs at lower concentrations of hydrogen in the fuel. Transient operation was tested in two directions - instability onset and decay - and two hydrogen-addition times - a short time of 1 millisecond and a longer time of 4 seconds. Results show that instability onset processes, through the transient addition of hydrogen, are highly repeatable regardless of the timescale of hydrogen addition. Certain instability decay processes are less repeatable, resulting in cases that do not fully transition from unstable to stable combustion despite similar changes in hydrogen fuel flow rate. Flame behavior before, during, and after the transient is characterized using high-speed CH* chemiluminescence imaging. Analysis of the high-speed images show changes in flame stabilization and dynamics during the onset and decay processes. The results of this study can have implications for systems that experience variations in fuel composition, particularly in light of growing interest in hydrogen as a renewable fuel.


2018 ◽  
Vol 849 ◽  
pp. 615-644 ◽  
Author(s):  
Nitin B. George ◽  
Vishnu R. Unni ◽  
Manikandan Raghunathan ◽  
R. I. Sujith

Gas turbine engines are prone to the phenomenon of thermoacoustic instability, which is highly detrimental to their components. Recently, in turbulent combustors, it was observed that the transition to thermoacoustic instability occurs through an intermediate state, known as intermittency, where the system exhibits epochs of ordered behaviour, randomly appearing amidst disordered dynamics. We investigate the onset of intermittency and the ensuing self-organization in the reactive flow field, which, under certain conditions, could result in the transition to thermoacoustic instability. We characterize this transition from a state of disordered and incoherent dynamics to a state of ordered and coherent dynamics as pattern formation in the turbulent combustor, utilizing high-speed flame images representing the distribution of the local heat release rate fluctuations, flow field measurements (two-dimensional particle image velocimetry), unsteady pressure and global heat release rate signals. Separately, through planar Mie scattering images using oil droplets, the collective behaviour of small scale vortices interacting and resulting in the emergence of large scale coherent structures is illustrated. We show the emergence of spatial patterns using statistical tools used to study transitions in other pattern forming systems. In this paper, we propose that the intertwined and highly intricate interactions between the wide spatio-temporal scales in the flame, the flow and the acoustics are through pattern formation.


Author(s):  
Wyatt Culler ◽  
Janith Samarasinghe ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca ◽  
Jacqueline O’Connor

Combustion instability in gas turbines can be mitigated using active techniques or passive techniques, but passive techniques are almost exclusively used in industrial settings. While fuel staging, a common passive technique, is effective in reducing the amplitude of self-excited instabilities in gas turbine combustors at steady-state conditions, the effect of transients in fuel staging on self-excited instabilities is not well understood. This paper examines the effect of fuel staging transients on a laboratory-scale five-nozzle can combustor undergoing self-excited instabilities. The five nozzles are arranged in a four-around-one configuration and fuel staging is accomplished by increasing the center nozzle equivalence ratio. When the global equivalence ratio is φ = 0.70 and all nozzles are fueled equally, the combustor undergoes self-excited oscillations. These oscillations are suppressed when the center nozzle equivalence ratio is increased to φ = 0.80 or φ = 0.85. Two transient staging schedules are used, resulting in transitions from unstable to stable operation, and vice-versa. It is found that the characteristic instability decay times are dependent on the amount of fuel staging in the center nozzle. It is also found that the decay time constants differ from the growth time constants, indicating hysteresis in stability transition points. High speed CH* chemiluminescence images in combination with dynamic pressure measurements are used to determine the instantaneous phase difference between the heat release rate fluctuation and the combustor pressure fluctuation throughout the combustor. This analysis shows that the instability onset process is different from the instability decay process.


Author(s):  
Kevin Prieur ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Sébastien Candel

This article reports experiments carried out in the MICCA-spray combustor developed at EM2C laboratory. This system comprises 16 swirl spray injectors. Liquid n-heptane is injected by simplex atomizers. The combustion chamber is formed by two cylindrical quartz tubes allowing full optical access to the flame region and it is equipped with 12 pressure sensors recording signals in the plenum and chamber. A high-speed camera provides images of the flames and photomultipliers record the light intensity from different flames. For certain operating conditions, the system exhibits well defined instabilities coupled by the first azimuthal mode of the chamber at a frequency of 750 Hz. These instabilities occur in the form of bursts. Examination of the pressure and the light intensity signals gives access to the acoustic energy source term. Analysis of the phase fluctuations between the two signals is carried out using cross-spectral analysis. At limit cycle, large pressure fluctuations of 5000 Pa are reached, and these levels persist over a finite period of time. Analysis of the signals using the spin ratio indicates that the standing mode is predominant. Flame dynamics at the pressure antinodal line reveals a strong longitudinal pulsation with heat release rate oscillations in phase and increasing linearly with the acoustic pressure for every oscillation levels. At the pressure nodal line, the flames are subjected to large transverse velocity fluctuations leading to a transverse motion of the flames and partial blow-off. Scenarios and modeling elements are developed to interpret these features.


Author(s):  
Nasser Seraj Mehdizadeh ◽  
Nozar Akbari

Lean premixed combustion is widely used in recent years as a method to achieve the environmental standards with regard to NOx emission. In spite of the mentioned advantage, premixed combustion systems, with equivalence ratios less than one, are susceptible to the combustion instability. To study the lean combustion instability, by experiments, one premixed combustion setup, equipped with reactant supplying system, is designed and manufactured in Amirkabir University of Technology. In this research, gaseous propane is introduced as fuel and several experiments are performed at nearly atmospheric pressure, with equivalence ratios within the range of 0.7 to 1.5. In this experiments fuel mass flow rate is varied between 2 and 4 gr/s. Unstable operating condition has been observed in combustion chamber when equivalence ratio is less than one. To distinguish the combustion instability for various operating conditions, probability density functions, spectral diagrams, and space distribution of pressure oscillations, along with Rayleigh Criterion, are utilized. Accordingly, effect of equivalence ratio on stabilizing the unstable combustion system is investigated. Moreover, convective delay time is calculated for all experiments and the results are compared with Rayleigh Criterion. This comparison has shown good agreement the experimental results and Rayleigh Criterion. Finally, stability limits are identified based on inlet mass flow rate and equivalence ratio.


Author(s):  
Nikhil Ashokbhai Baraiya ◽  
Baladandayuthapani Nagarajan ◽  
Satynarayanan R. Chakravarthy

In the present work, the proportion of carbon monoxide to hydrogen is widely varied to simulate different compositions of synthesis gas and the potential of the fuel mixture to excite combustion oscillations in a laboratory-scale turbulent bluff body combustor is investigated. The effect of parameters such as the bluff body location and equivalence ratio on the self-excited acoustic oscillations of the combustor is studied. The flame oscillations are mapped by means of simultaneous high-speed CH* and OH* chemiluminescence imaging along with dynamic pressure measurement. Mode shifts are observed as the bluff body location or the air flow Reynolds number/overall equivalence ratio are varied for different fuel compositions. It is observed that the fuel mixtures that are hydrogen-rich excite high amplitude pressure oscillations as compared to other fuel composition cases. Higher H2 content in the mixture is also capable of exciting significantly higher natural acoustic modes of the combustor so long as CO is present, but not without the latter. The interchangeability factor Wobbe Index is not entirely sufficient to understand the unsteady flame response to the chemical composition.


Sign in / Sign up

Export Citation Format

Share Document