scholarly journals Study on windbreak performance of tree canopy by numerical simulation method

2018 ◽  
Vol 10 (4) ◽  
pp. 259-265 ◽  
Author(s):  
Zhang Jian ◽  
Li Bo ◽  
Wang Mingyue

When airflow fly over trees, a shelter area will be generated at downstream area, and wind speed in the region will be reduced correspondingly. In order to analyze the windbreak performance of tree canopy, porous media method and additional source term are explored to simulate by computational fluid dynamics. Based on the given method, windbreak performance of trees with different canopy porosity, canopy shapes and distances between trees is investigated in detail, and characteristics of wind flow on the downstream of tree are shown. Results showed that small canopy porosity does not always mean good performance of windbreak, especially for the lower part. Canopy shapes only affect wind speed in the wake range. In these regions, windbreak performance of tree depends on the thickness of canopy. When distance is beyond 3H (H is the height of tree), wind speed becomes uniform at the downstream of tree and spacing can be equivalent to the porosity. But, for the region close to tree, trees with spacing cannot provide effective windshield. These simulations of tree canopy windbreak performance are conducted. All the results of the new model show better canopy flow characteristics through the field.

1990 ◽  
Vol 112 (4) ◽  
pp. 320-325
Author(s):  
D. L. Elliott ◽  
J. C. Barnard

This paper describes the results of a field experiment at the Goodnoe Hills, Wash. site to examine the effects of trees on wind flow variability and turbulence. Although vegetation at the site consisted primarily of grass, scattered areas of trees that penetrated the site provided an excellent opportunity to evaluate the effects of surface roughness changes on the wind flow characteristics. Wind data collected at nine towers across the site revealed that surface roughness changes in the upwind fetch caused pronounced variations in the wind flow over site. At two towers that were frequently 200 m to 300 m downwind of a grove of 10-m to 18-m trees, 20–30 percent reductions in wind speed and a factor of two to three increase in turbulence were measured at a height of 32 m. A substantial increase in the magnitude of the wind gusts, as well as a considerable decrease in the mean wind speed, was observed when a tower was downwind of the trees. Implications for a wind turbine located downwind of the trees, with a hub height near 30 m, would be reduced power output, more variable power output, more start/stop cycles, and increased stress caused by the tree-induced turbulence. The effects of the trees on the wind flow characteristics were considerably reduced at heights of 60 m and at distances greater than 500 m.


GIS Business ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 42-52
Author(s):  
Sadullayev Nasillo Nematovich ◽  
Safarov Alisher Bekmurodovich ◽  
Nematov Shuhrat Nasilloyevich ◽  
Mamedov Rasul Akif- Ogli

This article assesses the wind speed data and wind energy potential in the Bukhara region of Uzbekistan. In article it is stated a principle construction "hybrid" a source of the electric power consisting from wind power installation with mechanical store of energy, the solar panel with аккумулятор in common working with an electric network. The speed and direction of the wind measured at a height of 10 m were analyzed by the Weibull probability distribution functionTo determine the direction of wind flow (wind rose), a graph in Matlab environment was constructed. The method of an estimation energy of efficiency of the objects eating from several energy sources is offered. It is proved efficiency of application of such source of the electric power low power consumers


2021 ◽  
Vol 13 (10) ◽  
pp. 5688
Author(s):  
Jangyoul You ◽  
Kipyo You ◽  
Minwoo Park ◽  
Changhee Lee

In this paper, the air flow characteristics and the impact of wind power generators were analyzed according to the porosity and height of the parapet installed in the rooftop layer. The wind speed at the top was decreasing as the parapet was installed. However, the wind speed reduction effect was decreasing as the porosity rate increased. In addition, the increase in porosity significantly reduced turbulence intensity and reduced it by up to 40% compared to no railing. In the case of parapets with sufficient porosity, the effect of reducing turbulence intensity was also increased as the height increased. Therefore, it was confirmed that sufficient parapet height and high porosity reduce the effect of reducing wind speed by parapets and significantly reducing the turbulence intensity, which can provide homogeneous wind speed during installation of wind power generators.


2017 ◽  
Vol 9 (2) ◽  
pp. 439-462 ◽  
Author(s):  
Zheng Li ◽  
Zhiwei Shi ◽  
Hai Du

AbstractMulti-field coupling simulation method based on the physical principles is used to simulate the discharge characteristics of nanosecond pulsed plasma synthetic jet actuator. Considering the effect of the energy transferring for air, the flow characteristics of nanosecond pulsed plasma synthetic jet actuator are simulated. The elastic heating sources and ion joule heating sources are the two main sources of energy. Through the collisions, the energy of ions is transferred to the neutral gas quickly. The flow characteristics of a series of blast waves and the synthetic jet which erupt from the plasma synthetic jet (PSJ) actuator are simulated. The blast wave not only promotes outward, but also accelerates the gas mixing the inhaled gas from the outside cavity with the residual gas inside the cavity. The performances of PSJ actuator fluctuate in the first three incentive cycles and become stable after that.


Author(s):  
Sergey Sodnomovich Dorzhiev ◽  
Elena Gennadyevna Bazarova ◽  
Konstantin Sergeevich Morenko

This chapter describes the features of the work of wind-receiving devices in the insufficient power mode when the current wind speed is below the construction value of the wind power plant. The term “effective angle” is introduced. The importance of this problem is shown and the amount of time in the insufficient power mode, for example, wind power plant, is calculated. The main characteristics of an electrical generator and a wind receiving device are considered. The importance of the mapping the characteristics of the wind-receiving device and the electrical generator is shown.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 299
Author(s):  
Jie Fang ◽  
Weiqiu Huang ◽  
Fengyu Huang ◽  
Lipei Fu ◽  
Gao Zhang

Based on computational fluid dynamics (CFD) and Realizable k-ε turbulence model, we established a numerical simulation method for wind and vapor-concentration fields of various external floating-roof tanks (EFRTs) (single, two, and four) and verified its feasibility using wind-tunnel experiments. Subsequently, we analysed superposition effects of wind speed and concentration fields for different types of EFRTs. The results show that high concentrations of vapor are found near the rim gap of the floating deck and above the floating deck surface. At different ambient wind speeds, interference between tanks is different. When the ambient wind speed is greater than 2 m/s, vapor concentration in leeward area of the rear tank is greater than that between two tanks, which makes it easy to reach explosion limit. It is suggested that more monitoring should be conducted near the bottom area of the rear tank and upper area on the left of the floating deck. Superposition in a downwind direction from the EFRTs becomes more obvious with an increase in the number of EFRTs; vapor superposition occurs behind two leeward tanks after leakage from four large EFRTs. Considering safety, environmental protection, and personnel health, appropriate measures should be taken at these positions for timely monitoring, and control.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yupu Wang ◽  
Wenming Cheng ◽  
Run Du ◽  
Shubiao Wang ◽  
Yong Deng

The trapezoidal beam structure is ubiquitous in giant engineering equipment, while their aerodynamic characteristics have not been clearly understood. Numerical simulation method was adopted to investigate the flow around two tandem identical trapezoidal cylinders. The study was conducted using a Reynolds number of 2.2 × 104, and with a spacing ratio varying from 0.5 to 10. The incompressible two-dimensional finite volume method was used for solving Reynolds-Averaged Navier–Stokes (RANS) equations with realizable k−ε model. The effects of cylinder geometry and spacing between the cylinders on aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics, and flow instability was studied. The results show that the flow around the two tandem trapezoidal cylinders is highly dependent on the spacing ratio. The flow modes can be classified into: extended-body regime (Mode I, S∗ ≤ 1), reattachment regime (Mode II, 2 ≤ S∗ ≤ 3), and binary regime (Mode III, S∗ ≥ 4). We explored their respective flow characteristics and distinctions through the force/pressure coefficients, time-average streamwise velocity, and the flow field evolution.


Sign in / Sign up

Export Citation Format

Share Document