scholarly journals Annealing temperature dependency of structural, optical and electrical characteristics of manganese-doped nickel oxide nanosheet array films for humidity sensing applications

2021 ◽  
Vol 11 ◽  
pp. 184798042098278
Author(s):  
N Parimon ◽  
MH Mamat ◽  
IB Shameem Banu ◽  
N Vasimalai ◽  
MK Ahmad ◽  
...  

Manganese-doped nickel oxide nanosheet array films are successfully prepared on a nickel oxide seed-coated glass substrate by an immersion method. Various annealing temperatures between 300°C and 500°C are applied to the manganese-doped nickel oxide nanosheet array films to study their effect on the properties of nickel oxide, including humidity sensing performance. Field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), ultraviolet–visible (UV–vis) spectrophotometry, a two-probe current–voltage ( I- V) measurement system and a humidity measurement system are used to characterise the heat-treated manganese-doped nickel oxide samples. The effect of annealing temperature can be clearly observed for the different surface morphologies and diffraction patterns. The samples exhibit average crystallite size increases of 0.63–10.13 nm with increasing annealing temperature. The dislocation density, interplanar spacing, lattice parameter, unit cell volume and stress/strain are also determined from the XRD data. The average transmittances in the visible region for all samples show low percentages with the highest transparency of 50.7% recorded for manganese-doped nickel oxide annealed at 500°C. The optical band gap shows a decreasing trend with increasing annealing temperature. The I- V measurement results reveal that manganese-doped nickel oxide displays improved conductivity values with increasing annealing temperature. The sensitivity of the humidity sensors shows an ascending curve with increasing temperature. The optimal device performance is obtained with annealing at 500°C, with the highest sensitivity of 270 and the fastest response and recovery times. In contrast, the sample for annealing at 300°C shows poor sensing performance.

Author(s):  
N. Parimon ◽  
M. H. Mamat ◽  
A. S. Ismail ◽  
I. B. Shameem Banu ◽  
M. K. Ahmad ◽  
...  

Nickel oxide (NiO) nanosheet films were successfully grown onto NiO seed-coated glass substrates at different annealing temperatures for humidity sensing applications. NiO seed layers and NiO nanosheet films were prepared using a sol-gel spin coating and sonicated sol-gel immersion techniques, respectively. The properties of NiO nanosheet films at as-deposited, 300 ℃, and 500 ℃-annealed were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-vis) spectroscopy, and humidity sensor measurement system. The XRD patterns demonstrate that the grown NiO films have crystalline cubic structures at temperature of 300 ℃ and 500 ℃. The FESEM images show that the large porous nanosheet network spread over the layers as the annealing temperature increased. The UV-vis spectra revealed that all the nanosheet films have the average transmittance below than 50% in the visible region, with absorption edges ~ 350 nm. The optical band gap energy was evaluated in ranges of 3.39 to 3.61 eV. From the obtained humidity sensing results, it shows that 500 ℃-annealed film exhibited the best sensitivity of 257, as well as the slowest response time, and the fastest recovery time compared with others.


1970 ◽  
Vol 33 (2) ◽  
pp. 179-188
Author(s):  
MRA Bhuiyan ◽  
DK Saha ◽  
SM Firoz Hasan

In this study, AgGaSe2 (AGS) thin films were formed onto cleaned glass substrates by using the stacked elemental layer (SEL) deposition technique in vacuum. The films were prepared at the post-deposition annealing temperature from 100 to 350°C for 15 min duration. The atomic composition of the films was measured by energy dispersive analysis of X-ray (EDAX) method. The films ascertain the compositional uniformity. The X-ray diffraction (XRD) has been employed to study the structure of the films. The structures of the films are found to be polycrystalline in nature. The lattice parameters, grain size, strain and dislocation densities of the films were calculated. Optical characteristics of the films were ascertained by spectrophotometer in the photon wavelength ranging between 300 and 2500 nm. The transmittance was found to increase with the increase of annealing temperature. The transmittance falls steeply with decreasing wavelength. It revealed that AGS films have considerable absorption throughout the wavelength region from 400 to 800 nm. The optical band gap energy has been evaluated. Two possible direct allowed and direct forbidden transitions have been observed for all the AGS films in visible region. The former varied from 1.67 to 1.75 eV and the later from 2.05 to 2.08 eV, depending on the post-deposition annealing temperature of the films. DOI: 10.3329/jbas.v33i2.4101 Journal of Bangladesh Academy of Sciences, Vol. 33, No. 2, 179-188, 2009


2015 ◽  
Vol 3 (26) ◽  
pp. 6701-6708 ◽  
Author(s):  
Zhaolin Yang ◽  
Zhenyi Zhang ◽  
Kuichao Liu ◽  
Qing Yuan ◽  
Bin Dong

The humidity sensing performance of a 1D SnO2/TiO2 heterostructure is successfully optimized through adjusting the height of the surface potential barrier based on the heterojunction effect.


2020 ◽  
Vol 32 (9) ◽  
pp. 2335-2341
Author(s):  
NARENDRA KUMAR PANDEY ◽  
SANCHITA SINGH ◽  
PRIYA GUPTA

This work reports the enhancement of humidity sensing properties of tungsten trioxide (WO3) by the formation of nanocomposite with cuprous oxide (Cu2O). A 0.1 g of Cu2O was mixed with 0.9 g of WO3. Pellets of pure WO3 and the obtained mixture are prepared at pressure of 250 MPa applied for 0.5 h. The pellets were then annealed at 300 ºC, 400 ºC, 500 ºC and 600 ºC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyzed the crystallinity and morphology of as-prepared pellets surface. Humidity sensing application of pellets is studied in a specially designed chamber. It is observed that as relative humidity increases, there is decrease in the resistance of the pellets. The humidity-sensing investigation (10-99%RH) showed that the nanocomposite of Cu2O with WO3 annealed at 600 ºC, is having the best sensitivity, low hysteresis, less ageing and high reproducibility than pure WO3. It is also observed that as annealing temperature increases from 300 to 600 ºC, sensitivity increases. The present investigation could be useful for fabrication of resistive type humidity sensors for commercial applications.


2020 ◽  
Vol 16 (JUNE 2020) ◽  
pp. 100-105
Author(s):  
N.F.Q. Fahmi ◽  
M.H. Mamat ◽  
N Parimon ◽  
A.S. Zoolfakar ◽  
A.H.A Razak ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Somayeh Tajik ◽  
Mahboobeh Shahsavari ◽  
Iran Sheikhshoaie ◽  
Fariba Garkani Nejad ◽  
Hadi Beitollahi

AbstractA novel electrochemical sensing platform was designed and prepared for the simultaneous detection of sumatriptan and naproxen by exploiting the prowess of the Fe3O4@ZIF-8 nanoparticles (NPs); as-synthesized Fe3O4@ZIF-8 NPs were characterized by energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FESEM), transmission electron microscopy and thermal gravimetric analysis. The immobilized Fe3O4@ZIF-8 NPs on a screen printed graphite electrode (SPGE) was evaluated electrochemically via cyclic voltammetry, linear sweep voltammetry, and differential pulse voltammetry as well as chronoamprometery means; Fe3O4@ZIF-8/SPGE exhibited good sensing performance for sumatriptan in a range of 0.035–475.0 µM with detection limit of 0.012 µM. Also, Fe3O4@ZIF-8/SPGE exhibited good sensing performance for naproxen in a range of 0.1–700.0 µM with detection limit of 0.03 µM. The modified electrode showed two separate oxidative peaks at 620 mV for sumatriptan and at 830 mV for naproxen with a peak potential separation of 210 mV which was large enough to detect the two drugs simultaneously besides being stable in the long-run with considerable reproducibility. Real sample analyses were carried out to identify the function of fabricated electrode in sensing applications wherein trace amounts of sumatriptan and naproxen could be identified in these samples.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Jothi M ◽  
Sowmiya K

Nickel Oxide (NiO) is an important transition metal oxide with cubic lattice structure. NiO is thermally stable that is suitable for tremendous applications in the field of optic, ceramic,glass, electro-chromic coatings, plastics, textiles, nanowires, nanofibers, electronics,energy technology, bio-medicine, magnetism and so on. In this present study, NiO nanoparticles were successfully synthesized by sol-gel technique. Nano-sols were prepared by dissolving Nickel-Chloride [NiCl2.6H2O] in NaOH solvent and were converted into nano structured gel on precipitation. A systematic change in preparation parameters like calcination temperature, time, pH value has been noticed in order to predict the influence on crystallite size. Then the prepared samples were characterized by the X-ray Diffraction Spectroscopic (XRD), UV-VIS Spectroscopy, Fourier Transform Infra-Red Spectroscopy (FTIR), Energy Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). From XRD, the average crystalline-size has been calculated by Debye-Scherrer Equation and it was found to be 12.17 nm and the band gap energy of Nickel oxide (NiO) from UV studies reveals around 3.85 eV. Further, EDX and FTIR studies, confirm the presences of NiO nanoparticles. The SEM study exhibits the spherical like morphology of Nickel oxide (NiO). Further from PSA, the mean value of NiO nanoparticles has been determined.


2019 ◽  
Author(s):  
Chem Int

Optically transparent single crystals of potassium acid phthalate (KAP, 0.5 g) 0.05 g and 0.1 g (1 and 2 mol %) trytophan were grown in aqueous solution by slow evaporation technique at room temperature. Single crystal X- ray diffraction analysis confirmed the changes in the lattice parameters of the doped crystals. The presence of functional groups in the crystal lattice has been determined qualitatively by FTIR analysis. Optical absorption studies revealed that the doped crystals possess very low absorption in the entire visible region. The dielectric constant has been studied as a function of frequency for the doped crystals. The thermal stability was evaluated by TG-DSC analysis.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Sign in / Sign up

Export Citation Format

Share Document