scholarly journals Activities of Tannins – from in Vitro Studies to Clinical Trials

2015 ◽  
Vol 10 (11) ◽  
pp. 1934578X1501001 ◽  
Author(s):  
Elwira Sieniawska

Tannins are considered as valuable plant secondary metabolites providing many benefits for human health. In this review information was gathered about bioactivity in vitro and in vivo, as well as about conducted clinical trials. The literature research was based on ScienceDirect, Scopus, and Cochrane databases and presents a wide range of tested activities of tannins. The described clinical trials verify laboratory tests and show the effective health benefits taken from supplementation with tannins.

2016 ◽  
Vol 5 (03) ◽  
pp. 4927 ◽  
Author(s):  
Shubhi Srivastava ◽  
Paul A. K.

Plant associated microorganisms that colonize the upper and internal tissues of roots, stems, leaves and flowers of healthy plants without causing any visible harmful or negative effect on their host. Diversity of microbes have been extensively studied in a wide variety of vascular plants and shown to promote plant establishment, growth and development and impart resistance against pathogenic infections. Ferns and their associated microbes have also attracted the attention of the scientific communities as sources of novel bioactive secondary metabolites. The ferns and fern alleles, which are well adapted to diverse environmental conditions, produce various secondary metabolites such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, variety of amino acids and fatty acids along with some unique metabolites as adaptive features and are traditionally used for human health and medicine. In this review attention has been focused to prepare a comprehensive account of ethnomedicinal properties of some common ferns and fern alleles. Association of bacteria and fungi in the rhizosphere, phyllosphere and endosphere of these medicinally important ferns and their interaction with the host plant has been emphasized keeping in view their possible biotechnological potentials and applications. The processes of host-microbe interaction leading to establishment and colonization of endophytes are less-well characterized in comparison to rhizospheric and phyllospheric microflora. However, the endophytes are possessing same characteristics as rhizospheric and phyllospheric to stimulate the in vivo synthesis as well as in vitro production of secondary metabolites with a wide range of biological activities such as plant growth promotion by production of phytohormones, siderophores, fixation of nitrogen, and phosphate solubilization. Synthesis of pharmaceutically important products such as anticancer compounds, antioxidants, antimicrobials, antiviral substances and hydrolytic enzymes could be some of the promising areas of research and commercial exploitation.


2017 ◽  
Vol 52 ◽  
pp. 44-50 ◽  
Author(s):  
Zhi-Jun Liu ◽  
Jing Bai ◽  
Feng-Li Liu ◽  
Xiang-Yang Zhang ◽  
Jing-Zhang Wang

2019 ◽  
Vol 126 ◽  
pp. 598-610 ◽  
Author(s):  
Zhuotong Zeng ◽  
Biao Song ◽  
Rong Xiao ◽  
Guangming Zeng ◽  
Jilai Gong ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 1869-1880
Author(s):  
Sanjukta Mishra ◽  
Swastik Acharya

Probiotics are defined as non-pathogenic live microorganisms that, when administered in adequate amounts, confer health benefits on the host. Association of probiotics with human beings has a lot of history. Well known as 'health-friendly bacteria', they are widely used commercially as a functional food. The popularity of probiotics has gone exponentially high due to an increasing number of clinical trials, supporting their beneficial effects. Several in vivo and in-vitro experimental evidence supports strain-specific and disease-specific probiotic efficacy to prevent and ameliorate antibiotic-associated diarrhoea, traveller's diarrhoea, ulcerative colitis, and many more. Besides, numerous recent studies have reported that probiotics could have a significant effect in alleviating various metabolic, lifestyle and diet-related disorders like obesity, type 2 diabetes, metabolic syndrome, irritable bowel syndrome Strains of Bifidobacterium, Lactobacillus and Saccharomyces boulardii are the most commonly used as probiotics. Safety, efficacy, pathogenicity, infectivity, intrinsic property, virulence factors are to be addressed during probiotic selection. The underlying mechanisms of probiotics effects are still not fully elucidated and have been under intensive research. Numerous diverse, strain-specific probiotic mechanisms have been proposed, which include early colonization of perturbed microbes, competitive exclusion of pathogens, short-chain volatile fatty acid production, alteration of gut pH, immunomodulation and many more. Considering the remarkable influence on human health, probiotics seem to be alluring attractive agents to promote human health conditions and to improve the quality of life against several diseases. This review discusses the current documentation and recent advances on probiotics and their possible health attributes, in scientific literature, focusing on diverse, heterogeneous, and strain-specific mechanisms of action. Randomised human controlled clinical trials are needed to reconfirm its safety and beneficial effects.


2021 ◽  
Vol 27 ◽  
Author(s):  
Vibha Rani ◽  
Dhananjay Yadav ◽  
Neha Atale

Background: Cancer is a wide range cellular level disease that occurs when cells go through uncontrolled division and growth. The mechanisms by which the cells undergo metastasis are complex and involve many interactions between the tumor cells and their cellular environment. Matrix metalloproteinases (MMPs) have been found to over-express at various stages of tumor progression and their inhibition using MMP inhibitors has been a subject of potential therapy against cancer. Objective: This review discusses recent research in MMP inhibitors (MMPI) used for preventing tumor progression. Methods: In this review, we explored the role of MMPs in cancer progression and summarized the current developments in MMPIs, their role in cancer suppression in in vitro and in vivo studies and their evaluation in clinical trials from the current research data. Results: MMPIs have shown to be very successful in in vitro models, cell lines and in some in vivo studies. Unfortunately, their efficacy in clinical trials has been found to be hit and miss. Recent studies have shown that the novel delivery approaches of MMP inhibitors may enhance their therapeutic effects towards the prevention of cancer. Conclusion: In this review, we presented different MMP inhibitors, their performance at different stages of models - in vitro, in vivo, small animal models and eventually clinical trials. We provide newer methods of MMPI delivery that may be better targeted to suppress only specific MMPs and avoid toxic side-effects in healthy cells.


2021 ◽  
Author(s):  
Moataz Dowaidar

The considerable influence of siRNA and shRNA in controlling CRC by activating apoptosis and preventing CRC formation has been proven in vitro and in vivo research. Furthermore, the combined actions of inhibitors and RNAi-mediated gene knockdown may result in novel cancer therapy approaches.RNAi-based approaches give a wide range of prospective applications and a high degree of freedom to manipulate heretofore "unhackable" targets. However, in clinical investigations, RNAi medications are a major challenge to overcome. Furthermore, compared to other cancers such as melanoma, colon cancer has seen fewer clinical trials due to its tissue complexity. While new delivery strategies and materials are being investigated to increase distribution efficiency, randomized controlled trials must be done before treatment recommendations utilize RNAi. Safe, biodegradable and biocompatible NP delivery systems are still needed. Repeatable and simple batch production techniques for clinical trials and regulatory evaluations need to be created. Since unmodified siRNAs have limited cell uptake, they must be conjugated or complexed with suitable carrier systems. Furthermore, by combining siRNAs with adaptive and biocompatible nonviral carriers, the short half-life of siRNAs may be regulated due to their quick plasma and cell cytoplasm breakdown. Clinical trials should be explored with improved techniques to enhance RNAi medication encapsulation in lipid-based NPs such as liposomes or biodegradable polymers such as PLGA, cellular uptake and endosomal escape in mCRC cells. Advances in nanotechnology and medicinal chemistry may help address these issues, and adoption of RNAi-based therapeutics may increase.Another crucial part of employing RNAi-based therapeutics is finding suitable targets. Besides knowing target genes and pathways for CRC advancement, understanding modifying genes that compensate for the effect of target gene loss function and the degree of gene silence necessary is crucial.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Denis Okello ◽  
Jun Lee ◽  
Youngmin Kang

Inflammatory diseases are major health concerns affecting millions of people worldwide. Aspilia africana has been used for centuries by many African communities in the treatment of a wide range of health conditions, including inflammatory diseases, osteoporosis, rheumatic pains, and wounds. Analysis of the phytochemical composition of A. africana indicated that the plant is rich in a broad range of secondary metabolites, including flavonoids, alkaloids, tannins, saponins, terpenoids, sterols, phenolic compounds, and glycosides. This explains the efficacy of the plant in treating inflammation-related diseases, as well as several other health conditions affecting different African communities. The mechanisms of action of the anti-inflammatory phytochemical compounds in A. africana include inhibition of a number of physiological processes involved in the inflammatory process and synthesis or action of proinflammatory enzymes. The phytochemicals enhance anti-inflammatory biological responses such as inhibition of a number of chemical mediators including histamine, prostanoids and kinins, 5-lipoxygenase. and cyclooxygenase and activation of phosphodiesterase and transcriptase. Currently used anti-inflammatory medications are associated with several disadvantages such as drug toxicity and iatrogenic reactions, thereby complicating the treatment process. The adverse effects related to the use of these conventional synthetic drugs have been the driving force behind consideration of natural remedies, and efforts are being made toward the development of anti-inflammatory agents based on natural extracts. A. africana is rich in secondary metabolites, and its use as a traditional medicine for treating inflammatory diseases has been validated through in vitro and in vivo studies. Therefore, the plant could be further explored for potential development of novel anti-inflammatory therapeutics.


2000 ◽  
Vol 59 (3) ◽  
pp. 489-496 ◽  
Author(s):  
Aedin Cassidy ◽  
Marian Faughnan

The growing interest in the role of phyto-oestrogens in human health has prompted scientists to evaluate the risk : benefit which would result from consuming high levels of these compounds at different stages of the life cycle. These compounds have been shown to exert a wide range of hormonal and non-hormonal activities in animals and in vitro, and these activities suggest plausible mechanisms for potential health effects in human subjects consuming phyto-oestrogen-rich diets. In addition, experimental and epidemiological data are available supporting the concept that phyto-oestrogen-rich diets exert physiological effects in vivo; however, their relative importance to human health remains to be elucidated. Our understanding of factors involved in their absorption and metabolism, including the role of intestinal microflora, is limited, and these factors together with dose-related effects may well be important in determining clinical efficacy.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 476 ◽  
Author(s):  
Marzia Vasarri ◽  
Anna Maria De Biasi ◽  
Emanuela Barletta ◽  
Carlo Pretti ◽  
Donatella Degl’Innocenti

Posidonia oceanica (L.) Delile is a Mediterranean-endemic angiosperm often described for its great ecological importance. Despite evidence of a millennia-old relationship between P. oceanica and humans, as well as traditional medicine applications, the potential benefits of P. oceanica for human health have been documented only recently. This review aims to compile newly acquired knowledge on P. oceanica bioactive properties that allow the scientific community to look at this plant as a promising source of natural therapeutical products for human health. Experimental investigations conducted in both in vitro cellular-based and in vivo animal models pave the way for new research projects aiming at the development of alternative and complementary therapeutic strategies based on P. oceanica against a wide range of pathological conditions.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Todd Gouin ◽  
Robert Ellis-Hutchings ◽  
Leah M. Thornton Hampton ◽  
Christine L. Lemieux ◽  
Stephanie L. Wright

AbstractConcern regarding the human health implications that exposure to nano- and microplastic particles (NMPs) potentially represents is increasing. While there have been several years of research reporting on the ecotoxicological effects of NMPs, human health toxicology studies have only recently emerged. The available human health hazard data are thus limited, with potential concern regarding the relevance and reliability for understanding the potential human health implications. In this study we develop and apply a NMP toxicity screening assessment tool (NMP-TSAT) for evaluating human health effects studies against a suite of quality assurance and quality control (QA/QC) criteria for both in vivo and in vitro studies. A total of 74 studies representing either inhalation or oral exposure pathways were identified and evaluated. Assessment categories include particle characterization, experimental design, and applicability for risk assessment; with critical and non-critical criteria organized to allow screening and prioritization. It is observed that the majority of studies evaluated using the NMP-TSAT have been performed on monodisperse particles, predominately spheres (≈60%), consisting of polystyrene (≈46%). The majority of studies have tested particles < 5 μm, with a minimal particle size of 10 nm and a maximum particle size of about 200 μm. The total assessment score (TAS) possible for in vivo studies is 52, whereas for in vitro studies it is 46, which is based on receiving a maximum score of 2 against 26 and 23 criteria, respectively. The evaluated TAS ranged from between 12 and 44 and 16–34, for in vivo and in vitro studies, respectively. Given the challenges associated with prioritizing studies based on ranking them according to their TAS we propose a Tiered approach, whereby studies are initially screened based on how they score against various critical criteria, which have been defined for their relevance for assessing the hazards and risks for human health. In this instance, studies that score a minimum of ‘1’ against each of the critical criteria, regardless of how they rank according to their TAS, are prioritized as part of a Tier 1 screening and prioritization phase, which would then be followed by an expert evaluation, representing a Tier 2 level of assessment. Using this approach we identify 10 oral ingestion and 2 inhalation studies that score at least 1 against all critical criteria. Lastly, several key observations for strengthening future effects studies are identified, these include a need for the generation and access to standard reference materials representative of human exposure to NMPs for use in toxicity test systems and/or the improved characterization and verification of test particle characteristics, and the adoption of study design guidance, such as recommended by OECD, when conducting either in vivo inhalation or oral ingestion toxicity tests.


Sign in / Sign up

Export Citation Format

Share Document