scholarly journals Self-Assembled Casein Nanoparticles Loading Triptolide for the Enhancement of Oral Bioavailability

2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2094835
Author(s):  
Chengxia Liu ◽  
Ting-ting Jiang ◽  
Zhi-xiang Yuan ◽  
Yu Lu

Triptolide (TP), a broad-spectrum antitumor drug, has very poor solubility and oral bioavailability, which limits its clinical use. Compared with conventional formulations of TP, a casein (Cas)-based drug delivery system has been reported to have significant advantages for the improvement of solubility and bioavailability of insoluble drugs. In this paper, we report the successful preparation of TP-loaded Cas nanoparticles (TP-Cas) using the self-assembly characteristics of Cas in water and the optimization of the formulation by evaluation of entrapment efficiency (EE) and loading efficiency (LE). Dynamic light scattering, transmission electron microscopy, Fourier-transform infrared spectrometry, X-ray diffractometry (XRD), and differential scanning calorimetry (DSC) was adopted to characterize the TP-Cas. Results showed that the obtained TP-Cas were approximately spherical with a particle size of 128.7 ± 11.5 nm, EE of 72.7 ± 4.7 %, and LE of 8.0% ± 0.5%. Furthermore, in vitro release behavior of TP-Cas in PBS (pH = 7.4) was also evaluated, showing a sustained-release profile. Additionally, an in vivo study in rats displayed that the mean plasma concentration of TP after oral administration of TP-Cas was significantly higher than that treated with TP oral suspension. The C max value for TP-Cas (8.0 ± 4.4 μg/mL) was significantly increased compared with the free TP (0.9 ± 0.3 μg/mL). Accordingly, the area under the curve (AUC0-8) of TP-Cas was 2.8 ± 0.8 mg/L·h, 4.3-fold higher than that of TP suspension (0.6 ± 0.1 mg/L·h). Therefore, it can be concluded that TP-Cas enhanced the absorption and improved oral bioavailability of TP. Taking the good oral safety of Cas into consideration, TP-Cas should be a more promising preparation of TP for clinical application.

Author(s):  
Kishan V ◽  
Usha Kiranmai Gondrala ◽  
Narendar Dudhipala

Felodipine is an antihypertensive drug with poor oral bioavailability due to the first pass metabolism. For improving the oral bioavailability, felodipine loaded solid lipid nanoparticles (SLNs) were developed using trimyristin, tripalmitin and glyceryl monostearate. Poloxamer 188 was used as surfactant. Lipid excipient compatibilities were confirmed by differential scanning calorimetry. SLN dispersions were prepared by hot homogenization of molten lipids and aqueous phase followed by ultrasonication at a temperature, above the melting point. SLNs were characterized for particle size, zeta potential, drug content, entrapment efficiency and crystallinity of lipid and drug. In vitro release studies were performed in 0.1N HCl and phosphate buffer of pH 6.8 using dialysis method. Pharmacokinetics of felodipine-SLNs after oral admini-stration in male Wistar rats was studied. The bioavailability of felodipine was increased by 1.75 fold when compared to that of a felodipine suspension.  


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 338 ◽  
Author(s):  
Ye Bi ◽  
Bingcong Lv ◽  
Lianlian Li ◽  
Robert J. Lee ◽  
Jing Xie ◽  
...  

Proliposomes were used to improve the solubility and oral bioavailability of nifedipine. Nifedipine proliposomes were prepared by methanol injection-spray drying method. The response surface method was used to optimize formulation to enhance the encapsulation efficiency (EE%) of nifedipine. The particle size of nifedipine proliposomes after rehydration was 114 nm. Surface morphology of nifedipine proliposomes was observed by a scanning electron microscope (SEM) and interaction of formulation ingredients was assessed by differential scanning calorimetry (DSC). The solubility of nifedipine is improved 24.8 times after forming proliposomes. In vitro release experiment, nifedipine proliposomes had a control release effect, especially in simulated gastric fluid. In vivo, nifedipine proliposomes significantly improved the bioavailability of nifedipine. The area under the concentration-time curve (AUC0–∞) of nifedipine proliposomes was about 10 times than nifedipine after oral administration. The elimination half-life (T1/2β) of nifedipine was increased from 1.6 h to 6.6 h. In conclusion, proliposomes was a promising system to deliver nifedipine through oral route and warranted further investigation.


Author(s):  
Shubhangi Aher ◽  
Ravindra Pal Singh ◽  
Manish Kumar

The problem of bacterial conjunctivitis has dramatically increased in recent years due increased pollution and modern lifestyle. The present study was focused to fabricate Sparfloxacin loaded nanostructured lipid carriers (Spar-NLCs) for ophthalmic application to improve ocular penetration of drug and give sustained release of drug to reduce dosing frequency and toxic effect of drug associated with ocular membrane. A regular two-level factorial design was used to optimize the formulation parameters that are significantly affecting the formulation attributes. Spar-NLCs with particle size 171.1 ± 11 nm, zeta potential -49 ± 6.47 mV, entrapment efficiency 89.5 ± 5% and spherical in shape was obtained. Besides this, FTIR spectroscopy, differential scanning calorimetry, and transmission electron microscopy results suggest that the drug is successfully incorporated in NLC and has excellent compatibility with the excipients. In vitro release study follows Korsmeyer peppas model and suggests that 81.35 ± 6.2% release of drug from Spar-NLCs in 12 hours. The result of ex-vivo permeation study demonstrated 349.75 ± 7.3 µg/cm2 of permeation of drug, 44.482 µg cm-2 hr -1 of flux, and 0.1482 cm hr-1 of permeability coefficient which is 1.7 folds higher than pure drug suspension. The antimicrobial activity of Spar-NLCs was better than the pure drug suspension and equivalent to the marketed formulation. Spar-NLC formulation did not showed any ocular damage, swelling, and redness in in -vivo Draize test. The ocular tolerance test (HET-CAM test) also suggests that the Spar-NLC formulation and its excipients were nonirritant to the ocular tissues. The formulation was found to be stable over the three month of stability study. Therefore, this work strongly suggest that Spar-NLCs has higher penetration and extended release of drug which can be effectively used in prevention of bacterial conjunctivitis.


Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 904
Author(s):  
Irin Tanaudommongkon ◽  
Asama Tanaudommongkon ◽  
Xiaowei Dong

Most antiretroviral medications for human immunodeficiency virus treatment and prevention require high levels of patient adherence, such that medications need to be administered daily without missing doses. Here, a long-acting subcutaneous injection of lopinavir (LPV) in combination with ritonavir (RTV) using in situ self-assembly nanoparticles (ISNPs) was developed to potentially overcome adherence barriers. The ISNP approach can improve the pharmacokinetic profiles of the drugs. The ISNPs were characterized in terms of particle size, drug entrapment efficiency, drug loading, in vitro release study, and in vivo pharmacokinetic study. LPV/RTV ISNPs were 167.8 nm in size, with a polydispersity index of less than 0.35. The entrapment efficiency was over 98% for both LPV and RTV, with drug loadings of 25% LPV and 6.3% RTV. A slow release rate of LPV was observed at about 20% on day 5, followed by a sustained release beyond 14 days. RTV released faster than LPV in the first 5 days and slower than LPV thereafter. LPV trough concentration remained above 160 ng/mL and RTV trough concentration was above 50 ng/mL after 6 days with one subcutaneous injection. Overall, the ISNP-based LPV/RTV injection showed sustained release profiles in both in vitro and in vivo studies.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


2017 ◽  
Vol 6 (6) ◽  
pp. 517-526 ◽  
Author(s):  
Permender Rathee ◽  
Anjoo Kamboj ◽  
Shabir Sidhu

AbstractBackground:Piperine helps in the improvement of bioavailability through pharmacokinetic interaction by modulating metabolism when administered with other drugs. Nisoldipine is a substrate for cytochrome P4503A4 enzymes. The study was undertaken to assess the influence of piperine on the pharmacokinetics and pharmacodynamics of nisoldipine nanoparticles in rats.Methods:Optimization studies of nanoparticles were performed using Taguchi L9 orthogonal array, and the nanoparticles were formulated by the precipitation method. The influence of piperine and nanoparticles was evaluated by means of in vivo kinetic and dynamic studies by oral administration in rats.Results:The entrapment efficiency, drug loading, ζ potential, and average particle size of optimized nisoldipine-piperine nanoparticles was 89.77±1.06%, 13.6±0.56%, −26.5 mV, and 132±7.21 nm, respectively. The in vitro release in 0.1 n HCl and 6.8 pH phosphate buffer was 96.9±0.48% and 98.3±0.26%, respectively. Pharmacokinetic studies showed a 4.9-fold increase in oral bioavailability and a >28.376±1.32% reduction in systemic blood pressure by using nanoparticles as compared to control (nisoldipine suspension) in Wistar rats.Conclusion:The results revealed that piperine being an inhibitor of cytochrome P4503A4 enzymes enhanced the bioavailability of nisoldipine by 4.9-fold in nanoparticles.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1853-1863
Author(s):  
Shubhra Rai ◽  
Gopal Rai ◽  
Ashish Budhrani

Lipospheres represent a novel type of fat-based encapsulation system produced for the topical drug delivery of bioactive compounds. The goal of this research work was to develop lipospheres, including ketoprofen applied for topical skin drug delivery. Ketoprofen lipospheres were formulated by melt emulsification method using stearic acid and Phospholipon® 90G. The lipospheres were analysed in terms of particle size and morphology, entrapment efficiency, Differential scanning calorimetry, In-vitro drug release, In-vivo (Anti-inflammatory activity). Outcomes of research revealed that particle size was found to be 9.66 µm and entrapment efficiency 86.21 ± 5.79 %. In-vivo, the study of ketoprofen loaded lipospheres formulation shows a higher plain formulation concentration in plasma (5.61 mg/mL). For dermis, ketoprofen retention was 27.02 ± 5.4 mg/mL for the lipospheres formulation, in contrast to that of the plain formulation group (10.05 ± 2.8 mg/mL). The anti-inflammatory effect of liposphere drug delivery systems was assessed by the xylene induced ear oedema technique and compared with marketed products. Finally, it seems that the liposphere drug delivery system possesses superior anti-inflammatory activity as compared to the marketed product gel consistencies. Liposphere may be capable of entrapping the medicament at very high levels and controlling its release over an extended period. Liposphere furnishes a proper size for topical delivery as well as is based on non-irritating and non-toxic lipids; it’s a better option for application on damaged or inflamed skin.


Sign in / Sign up

Export Citation Format

Share Document