scholarly journals A Liposomal Formulation for Improving Solubility and Oral Bioavailability of Nifedipine

Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 338 ◽  
Author(s):  
Ye Bi ◽  
Bingcong Lv ◽  
Lianlian Li ◽  
Robert J. Lee ◽  
Jing Xie ◽  
...  

Proliposomes were used to improve the solubility and oral bioavailability of nifedipine. Nifedipine proliposomes were prepared by methanol injection-spray drying method. The response surface method was used to optimize formulation to enhance the encapsulation efficiency (EE%) of nifedipine. The particle size of nifedipine proliposomes after rehydration was 114 nm. Surface morphology of nifedipine proliposomes was observed by a scanning electron microscope (SEM) and interaction of formulation ingredients was assessed by differential scanning calorimetry (DSC). The solubility of nifedipine is improved 24.8 times after forming proliposomes. In vitro release experiment, nifedipine proliposomes had a control release effect, especially in simulated gastric fluid. In vivo, nifedipine proliposomes significantly improved the bioavailability of nifedipine. The area under the concentration-time curve (AUC0–∞) of nifedipine proliposomes was about 10 times than nifedipine after oral administration. The elimination half-life (T1/2β) of nifedipine was increased from 1.6 h to 6.6 h. In conclusion, proliposomes was a promising system to deliver nifedipine through oral route and warranted further investigation.

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2094835
Author(s):  
Chengxia Liu ◽  
Ting-ting Jiang ◽  
Zhi-xiang Yuan ◽  
Yu Lu

Triptolide (TP), a broad-spectrum antitumor drug, has very poor solubility and oral bioavailability, which limits its clinical use. Compared with conventional formulations of TP, a casein (Cas)-based drug delivery system has been reported to have significant advantages for the improvement of solubility and bioavailability of insoluble drugs. In this paper, we report the successful preparation of TP-loaded Cas nanoparticles (TP-Cas) using the self-assembly characteristics of Cas in water and the optimization of the formulation by evaluation of entrapment efficiency (EE) and loading efficiency (LE). Dynamic light scattering, transmission electron microscopy, Fourier-transform infrared spectrometry, X-ray diffractometry (XRD), and differential scanning calorimetry (DSC) was adopted to characterize the TP-Cas. Results showed that the obtained TP-Cas were approximately spherical with a particle size of 128.7 ± 11.5 nm, EE of 72.7 ± 4.7 %, and LE of 8.0% ± 0.5%. Furthermore, in vitro release behavior of TP-Cas in PBS (pH = 7.4) was also evaluated, showing a sustained-release profile. Additionally, an in vivo study in rats displayed that the mean plasma concentration of TP after oral administration of TP-Cas was significantly higher than that treated with TP oral suspension. The C max value for TP-Cas (8.0 ± 4.4 μg/mL) was significantly increased compared with the free TP (0.9 ± 0.3 μg/mL). Accordingly, the area under the curve (AUC0-8) of TP-Cas was 2.8 ± 0.8 mg/L·h, 4.3-fold higher than that of TP suspension (0.6 ± 0.1 mg/L·h). Therefore, it can be concluded that TP-Cas enhanced the absorption and improved oral bioavailability of TP. Taking the good oral safety of Cas into consideration, TP-Cas should be a more promising preparation of TP for clinical application.


Author(s):  
Kishan V ◽  
Usha Kiranmai Gondrala ◽  
Narendar Dudhipala

Felodipine is an antihypertensive drug with poor oral bioavailability due to the first pass metabolism. For improving the oral bioavailability, felodipine loaded solid lipid nanoparticles (SLNs) were developed using trimyristin, tripalmitin and glyceryl monostearate. Poloxamer 188 was used as surfactant. Lipid excipient compatibilities were confirmed by differential scanning calorimetry. SLN dispersions were prepared by hot homogenization of molten lipids and aqueous phase followed by ultrasonication at a temperature, above the melting point. SLNs were characterized for particle size, zeta potential, drug content, entrapment efficiency and crystallinity of lipid and drug. In vitro release studies were performed in 0.1N HCl and phosphate buffer of pH 6.8 using dialysis method. Pharmacokinetics of felodipine-SLNs after oral admini-stration in male Wistar rats was studied. The bioavailability of felodipine was increased by 1.75 fold when compared to that of a felodipine suspension.  


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 135 ◽  
Author(s):  
Seung Han ◽  
Qili Lu ◽  
Kyeong Lee ◽  
Young Choi

P-glycoprotein (P-gp)-mediated efflux of docetaxel in the gastrointestinal tract mainly impedes its oral chemotherapy. Recently, LC478, a novel di-substituted adamantyl derivative, was identified as a non-cytotoxic P-gp inhibitor in vitro. Here, we assessed whether LC478 enhances the oral bioavailability of docetaxel in vitro and in vivo. LC478 inhibited P-gp mediated efflux of docetaxel in Caco-2 cells. In addition, 100 mg/kg of LC478 increased intestinal absorption of docetaxel, which led to an increase in area under plasma concentration-time curve (AUC) and absolute bioavailability of docetaxel in rats. According to U.S. FDA criteria (I, an inhibitor concentration in vivo tissue)/(IC50, inhibitory constant in vitro) >10 determines P-gp inhibition between in vitro and in vivo. The values 15.6–20.5, from (LC478 concentration in intestine, 9.37–12.3 μM)/(IC50 of LC478 on P-gp inhibition in Caco-2 cell, 0.601 μM) suggested that 100 mg/kg of LC478 sufficiently inhibited P-gp to enhance oral absorption of docetaxel. Moreover, LC478 inhibited P-gp mediated efflux of docetaxel in the ussing chamber studies using rat small intestines. Our study demonstrated that the feasibility of LC478 as an ideal enhancer of docetaxel bioavailability by P-gp inhibition in dose (concentration)-dependent manners.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 328 ◽  
Author(s):  
Zhuang Ding ◽  
Lili Wang ◽  
Yangyang Xing ◽  
Yanna Zhao ◽  
Zhengping Wang ◽  
...  

Celecoxib (CLX), a selective COX-2 inhibitor, is a biopharmaceutics classification system (BCS) class II drug with its bioavailability being limited by thepoor aqueoussolubility. The purpose of this study was to develop and optimize CLX nanocrystalline(CLX-NC) solid dispersion prepared by the wet medium millingtechnique combined with lyophilizationto enhance oral bioavailability. In formulation screening, the resulting CLX-NC usingpolyvinylpyrrolidone (PVP) VA64 and sodiumdodecyl sulfate (SDS) as combined stabilizers showed the minimum particle size and a satisfactory stability. The formulation and preparation processwere further optimized by central composite experimentaldesign with PVP VA64 concentration (X1), SDS concentration (X2) and milling times (X3) as independent factors and particle size (Y1), polydispersity index (PDI, Y2) and zeta potential (Y3) as response variables. The optimal condition was determined as a combination of 0.75% PVP VA64, 0.11% SDS with milling for 90 min.The particle size, PDI and zeta potential of optimized CLX-NC were found to be 152.4 ± 1.4 nm, 0.191 ± 0.012 and −34.4 ± 0.6 mV, respectively. The optimized formulation showed homogeneous rod-like morphology as observed by scanning electron microscopy and was in a crystalline state as determined by differential scanning calorimetry and powder X-ray diffraction. In a storage stability study, optimized CLX-NC exhibited an excellent physical stability during six months’ storage at both the refrigeration and room conditions. In vivo pharmacokinetic research in Sprague-Dawley ratsdisplayed that Cmax and AUC0–∞ of CLX-NC were increased by 2.9 and 3.1 fold, compared with physical mixture. In this study, the screening and optimizing strategy of CLX-NC formulation represents a commercially viable approach forenhancing the oral bioavailability of CLX.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jennifer L. MacNicol ◽  
Wendy Pearson

In vitro organ culture can provide insight into isolated mucosal responses to particular environmental stimuli. The objective of the present study was to investigate the impact of a prolonged culturing time as well as the addition of acidic gastric fluid into the in vitro environment of cultured gastric antral tissue to evaluate how altering the commonly used neutral environment impacted tissue. Furthermore, we aimed to investigate the impact of G's Formula, a dietary supplement for horses, on the secretion of gastrin, interleukin1-beta (IL-1β), and nitric oxide (NO). These biomarkers are of interest due to their effects on gastric motility and mucosal activity. Gastric mucosal tissue explants from porcine stomachs were cultured in the presence of a simulated gastric fluid (BL, n = 14), simulated gastric fluid containing the dietary supplement G's Formula (DF, n = 12), or an equal volume of phosphate buffered saline (CO, n = 14). At 48 and 60 h, 10−5 M carbachol was used to stimulate gastrin secretion. Cell viability was assessed at 72 h using calcein and ethidium-homodimer 1 staining. Media was analyzed for gastrin, IL-1β, and NO at 48, 60, and 72 h. There were no effects of treatment or carbachol stimulation on explant cell viability. Carbachol resulted in a significant increase in gastrin concentration in CO and DF treatments, but not in BL. NO was higher in CO than in BL, and NO increased in the CO and DF treatments but not in BL. In conclusion, the addition of carbachol and gastric digests to culture media did not impact cell viability. The use of an acidic gastric digest (BL) reduced the effect of cholinergic stimulation with carbachol at a concentration of 10−5 M and reduced NO secretion. The addition of the dietary supplement to the gastric digest (DF) appeared to mediate these effects within this model. Further research is required to evaluate the specific effects of this dietary supplement on direct markers of mucosal activity and the functional relevance of these results in vivo.


2017 ◽  
Vol 9 (4) ◽  
pp. 54 ◽  
Author(s):  
Jose Raul Medina ◽  
Jonathan Hernandez ◽  
Marcela Hurtado

Objective: To characterize the in vitro release of carbamazepine tablets and benzoyl metronidazole suspensions using the flow-through cell apparatus and simulated gastrointestinal fluids.Methods: Tegretol® tablets, Flagyl® suspension, and generic formulations of each were tested. Release studies were performed using an automated flow-through cell apparatus. Simulated gastric fluid (with and without pepsin) and simulated intestinal fluid (without pancreatin) at 16 ml/min and fasted state simulated intestinal fluid at 8 ml/min, all at 37.0±0.5 °C, were used as dissolution media. The quantity of dissolved carbamazepine and benzoyl metronidazole was determined at 5-min intervals until 60 min at 285 and 278 nm, respectively. Percentage dissolved at 60 min, mean dissolution time, dissolution efficiency values, and t10%, t25%, t50% and t63.2% were calculated. Mean values for all parameters were compared between the reference and generic formulations using Studentʼs t-test. Dissolution data were fitted to different kinetic models.Results: Simulated gastric fluid without pepsin showed no discriminative capability for carbamazepine tablets. Significant differences were observed between the reference and generic formulations for almost all parameters (*P<0.05). In some cases, the logistic model best described the in vitro release of both drugs.Conclusion: Using an apparatus and media that best simulates the gastrointestinal environment, we identified differences in the rate and extent of dissolution of both drugs that could help to optimise the design of interchangeable formulations. Based on the physicochemical characteristics of carbamazepine and benzoyl metronidazole and the conditions in which the formulations were tested, these differences could be of clinical relevance. 


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 235 ◽  
Author(s):  
Lyes Mehenni ◽  
Malika Lahiani-Skiba ◽  
Guy Ladam ◽  
François Hallouard ◽  
Mohamed Skiba

In the present study, new polymer microspheres of amphotericin B (AmB) were prepared by a spray drying technique using cyclodextrin polymers (Poly-CD) to improve the solubility and dissolution of AmB, to prevent in vivo toxic AmB aggregations. Formulations were characterized through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermal analysis, Raman spectroscopy, particle size, drug purity test and in vitro release studies. The analysis indicated that the chemical structure of AmB remained unchanged in the amorphous solid dispersion, but the structure was changed from crystalline to amorphous. AmB was completely release from such optimized formulations in dissolution media in 40 min. This work may contribute to a new generation of spherical amorphous solid dispersion using a cyclodextrin polymer, which has implications for the possibility of drug development for oral utilization or as powder aerosols for pulmonary administration.


Author(s):  
Adel M Aly ◽  
Khaled M. Al-Akhali ◽  
Hesham Alrefaey ◽  
Mahmoud A. Shaker

Gliclazide (GZ) is practically insoluble in water and its bioavailability is limited by dissolution rate. The aim of the present study was to enhance the dissolution rate and bioavailability of GZ by complexation with hydroxypropyl (HP)-β-cyclodextrin (CD) applying three different methods; physical mixing, kneading technique and spray drying technique.  Also, to evaluate the dissolution rate and the hypoglycemic effect of the prepared complexes, in comparison with the GZ market product (Glizide tablets) in Saudi market. The produced complexes were characterized and evaluated using Differential Scanning Calorimetry (DSC), X-ray Diffractometry (XRD), Scanning Electron Microscope (SEM) and the in vitro release studies. All the methods of preparation of complexes were found to be effective in improving the solubility of gliclazide in comparison with the commercial product (Glizide tablets). The formation of inclusion complexes was evident in these formulations as shown by DSC and XRD studies. The inclusion complexes prepared by spray drying method in 1:1 molar ratios were the most effective method for improving the solubility of GZ. The in-vivo hypoglycemic effect of the complexed GZ-HP-β-CD prepared by spray drying significantly improved the biological performance and therapeutic efficacy of the drug compared to Glizide market product.  


Author(s):  
Bhabani Satapathy ◽  
Asuprita Patel ◽  
Rudra Sahoo ◽  
Subrata Mallick

Crystal engineering is an integral part of the drug development research. Crystal forms can modify the physicochemical properties of the parent drug molecule. The present work was aimed at the synthesis and characterization of crystalline product of lamotrigine (LT), a FDA approved anti-epileptic drug, with citric acid (CA) to improve its release in gastric region and oral absorption. The crystalline products of LT-CA were developed by solvent evaporation method using ethanol-water as the solvent system. Appearance of new charac-teristic peaks in the FTIR spectra for the crystal products indicated formation of new crystal state. In DSC thermogram, melting point of the experimental crystal products was different than that of the pure drug. Further, formation of new crystalline phase was confirmed from XRD data through the identification of new sharp peaks for the selected crystal products. A higher cumulative percen-tage of drug release was observed for the crystal products than the free drug within 60 min of drug release in simulated gastric fluid. However, in vivo studies are warranted for the future technology transfer of the product at industrial scale.


Sign in / Sign up

Export Citation Format

Share Document