scholarly journals Inhibitory effect of edaravone on systemic inflammation and local damage in skeletal muscles following long-term ischemia to murine hind limb

2019 ◽  
Vol 27 (3) ◽  
pp. 230949901987447 ◽  
Author(s):  
Hirokazu Yokoyama ◽  
Masaya Tsujii ◽  
Takahiro Iino ◽  
Tomoki Nakamura ◽  
Akihiro Sudo

Purpose: The purpose of this study was to evaluate local and systemic pathology in a murine model of ischemia–reperfusion (I/R) injury induced by long-term application of a tourniquet on the hind limbs and to assess the protective effects of edaravone, a potent systemic scavenger of free radicals, using this model. Methods: Sixty C57BL6 mice were divided in two groups, with one group receiving a 3 mg/kg intraperitoneal injection of edaravone and the other group receiving an identical amount of saline 30 min before ischemia under deep anesthesia. The left thigh of each animal was constricted for 4 h with a 4.5-oz. orthodontic rubber band to induce ischemia; 4 h was the critical duration for skeletal muscles. After ischemia, specimens of skeletal muscles, both kidneys, and plasma were collected at 0, 2, 12, 24, 48, and 72 h. Injury to the skeletal muscles and vacuolar degeneration of the kidneys were histologically assessed. Additionally, apoptosis of skeletal muscle cells was assessed by analysis of caspase 3/7 activity and TUNEL staining. Plasma tumor necrosis factor (TNF)-α levels were measured using an enzyme-linked immunosorbent assay kit. Results: Skeletal muscles exhibited prominent injury of myofibers at 12 h after I/R injury, with clear upregulation of plasma TNF-α expression and histologic evidence of tubular dysfunction of the kidneys. Plasma TNF-α levels declined and histologic renal damage was ameliorated in edaravone-treated mice, but treatment did not protect skeletal muscle following ischemia for 4 h. Nonetheless, compared with group S, expression of the apoptosis marker caspase 3/7 was significantly inhibited in the skeletal hind limb muscles of Ed-group mice affected by reperfusion injury following ischemia for 4 h. Conclusion: The present study demonstrated that edaravone is a potentially useful drug for systemic or local treatment of reperfusion injury resulting from long-term ischemia.

Author(s):  
Eman A. Abdel-Aziz ◽  
Heba A. Elnoury

Background: Skeletal muscles are susceptible for ischemic reperfusion injury especially in settings in order to achieve homeostasis in traumatic injury and vascular surgery. This study aimed at investigating the implication of induction of diabetes on generation of ischemic reperfusion injury in rat gastrocnemius muscle. In addition, the possible beneficial effect of metformin and co-enzyme q10 was investigated.Methods: About 80 male adult Sprague Dawley rats divided into 10 groups. Metformin was administrated as continuous oral dose for 28 days. Coenzyme q10 was administrated parenterally 2 and 24 hours before induction of ischemia in diabetic and non-diabetic animals.Results: In diabetic ischemic groups, tested drugs either singly or in combination significantly reduce HB1cA and plasma levels of muscle specific enzyme CPK and muscle myokin IL6, raised natural antioxidant GSH and reduced oxidative stress parameters (SOD and MDA), apoptotic (caspase-3) and inflammatory parameters TNF-α and TGFβ were reduced. Continuous oral metformin for 28 days was more powerful than parenteral short-term coenzyme q10 as regards all tested parameters except for GSH and caspase-3 both drugs were equi-effective. Combined drugs have more powerful ameliorating effect than either drug singly except for HB1cA which was equi-effective with that of metformin. Regarding non diabetic ischemic groups, metformin was more powerful in reduction of caspase-3, IL6 and TNF- α while coenzyme q10 was more powerful in elevating GSH.Conclusions: Co-enzyme q10 can be used as add on therapy with metformin in order to decrease the deleterious effects resulted from hind limb ischemia reperfusion in normal and diabetic rats.


2016 ◽  
Vol 38 (4) ◽  
pp. 1365-1375 ◽  
Author(s):  
Jie Jian ◽  
Feifei Xuan ◽  
Feizhang Qin ◽  
Renbin Huang

Background/Aims: Previous studies have demonstrated that Bauhinia championii flavone (BCF) exhibits anti-oxidative, anti-hypoxic and anti-stress properties. This study was designed to investigate whether BCF has a cardioprotective effect against myocardial ischemia/reperfusion (I/R) injuries in rats and to shed light on its possible mechanism. Methods: The model of I/R was established by ligating the left anterior descending coronary artery for 30 min, then reperfusing for 180 min. Hemodynamic changes were continuously monitored. The content of malondialdehyde (MDA) as well as the lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were assessed. The release of interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). Apoptosis of cardiomyocytes was determined by caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expression of TLR4, NF-κBp65, Bcl-2 and Bax were detected by western blotting. Results: Pretreatment with BCF significantly reduced the serum levels of LDH, MDA and IL-6, but increased the activities of SOD and GSH-Px. It also attenuated myocardial infarct size, reduced the apoptosis rate and preserved cardiac function. Furthermore, BCF inhibited caspase-3 activity and the expression of TLR4, phosphorylated NF-κBp65 and Bax, but enhanced the expression of Bcl-2. Conclusion: These results provide substantial evidence that BCF exerts a protective effect on myocardial I/R injury, which may be attributed to attenuating lipid peroxidation, the inflammatory response and apoptosis.


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1986417
Author(s):  
Beibei Zhang ◽  
Mengnan Zeng ◽  
Meng Li ◽  
Wenjing Chen ◽  
Benke Li ◽  
...  

This study investigated the protective effects of guaiane-type sesquiterpenoids isolated from Dendranthema morifolium (Ramat.) S. Kitam flowers on lipopolysaccharide (LPS)-induced injury in H9c2 cardiomyocyte. Cell viability was determined by thiazolyl blue tetrazolium bromide (MTT). The content of released tumor necrosis factor alpha (TNF- α) and interleukin 6 (IL-6) was evaluated by enzyme-linked immunosorbent assay. The levels of lactate dehydrogenase (LDH) and creatine phosphate kinase (CK) were measured by using commercial available kits. The protein expression levels of pelF2 α, GRP78, Bax, caspase-3, caspase-9, Bcl-2, LC3-II, and p62 were measured by in-cell Western. Flow cytometry was used to detect H9c2 cardiomyocyte apoptosis. Compounds 5, 7, 1, 8, and 2 exhibited the effects of cardioprotection and activity sequence enhancement. The levels of IL-6, TNF- α, LDH, CK, pelF2 α, GRP78, Bax, caspase-3, caspase-9, p62, and H9c2 cardiomyocyte apoptosis were increased in LPS-treated H9c2 cardiomyocyte, while those of Bcl-2 and LC3-II were decreased. These effects could be effectively reversed by compounds 5, 7, 1, 8, and 2. Results demonstrated that the guaiane-type sesquiterpenoids could prevent LPS-induced injury in cardiomyocyte by decreasing endoplasmic reticulum (ER) stress, apoptosis, and autophagy as well as downregulating the inflammatory mediators. In addition, the active groups of guaiane-type sesquiterpenoids might be the angelate at C-8 and the exocyclic double bond at C-11.


2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2097764
Author(s):  
Xiaoli Yuan ◽  
Jing Wang ◽  
Yun Zhang

Renal ischemia reperfusion injury (RIRI) is one of the main causes of acute kidney injury. This study aimed to explore whether tubeimoside-1 (TBMS1) could protect against RIRI. RIRI mice model and hypoxia/reoxygenation (H/R)-induced NRK-52E cells were used in this study. The renal pathology was observed by hematoxylin and eosin staining to calculate the tubular injury score. The levels of serum creatinine and blood urine nitrogen were analyzed by a Hitachi model 7180 automatic analyzer. The expressions of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin 6 (IL-6), Bax, cleaved caspase-3, cleaved caspase-9, total caspase-3, and total caspase-9 in renal tissues and NRK-52E cells were detected by western blot analysis. The levels of TNF-α, IL-1β, and IL-6 in serum and NRK-52E cells were measured by a commercial enzyme-linked immunosorbent assay kit. The renal cell apoptosis in renal tissues was analyzed by TUNEL assay, and NRK-52E cell apoptosis was detected by flow cytometry analysis. CCK-8 assay was used to analyze the viability of NRK-52E cells after the indicated treatment. As a result, the renal tissues that were seriously damaged in mice with RIRI could be alleviated by TBMS1. Therefore, 50 mg/kg TBMS1 was chosen for the animal experiment. Renal cell apoptosis was increased in renal tissues of mice with RIRI. These changes could be partially reversed by TBMS1 treatment. TBMS1 improved the viability, and reduced the inflammation and apoptosis of H/R-induced NRK-52E cells. In conclusion, TBMS1 ameliorates RIRI by promoting viability and suppressing apoptosis and inflammation of renal cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jie Sun ◽  
Shanzhai Wei ◽  
Yilai Zhang ◽  
Jia Li

Objective. To explore the protective roles of Astragalus polysaccharide (APS) on acute renal injury (AKI) induced by sepsis. Methods. Firstly, an animal model of sepsis-induced AKI was established by injecting lipopolysaccharide (LPS) into mice. The mice were pretreated with an intraperitoneal injection of 1, 3, and 5 mg/(kg·d) APS for 3 consecutive days. The severity of kidney injury was then scored by histopathological analysis, and the concentrations of serum urea nitrogen (BUN) and serum creatinine (SCr) and the levels of tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) were determined as well. In in vitro experiments, lipopolysaccharide (LPS) was used to induce HK-2 cell injury to establish a sepsis-induced AKI cell model, and the cell counting kit-8 (CCK-8) method was performed to determine the cytotoxicity and appropriate experimental concentration of APS. Then, cells were divided into the control, LPS, and APS+LPS groups. Cell apoptosis and inflammation-related TNF-α, IL-1β, IL-6, and IL-8 were determined by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. The microscope was used to observe the morphological changes of cells, and the cell migration ability was measured by wound healing assay. RT-qPCR and Western blot assay were used to determine the mRNA and protein levels of apoptosis-related factors including caspase-3, caspase-9, Bax, and Bcl-2; endoplasmic reticulum stress- (ERS-) related biomarkers including C/EBP homologous protein (CHOP) and glucose-regulated protein78 (GRP78); and epithelial-mesenchymal transition- (EMT-) related biomarkers including E-cadherin, Snail, α-smooth muscle actin (α-SMΑ), and Vimentin. Results. In vivo experiments in mice showed that APS can reverse LPS-induced kidney damage in a concentration-dependent manner ( P < 0.05 ); the concentrations of BUN and Scr were increased (all P < 0.05 ); similarly, the levels of TNF-α and IL-1β were increased as well (all P < 0.05 ). In in vitro experiments, the results showed that LPS can significantly cause HK-2 cell damage and induce apoptosis, inflammation, ERS, and EMT. When APS concentration was in the range of 0-200 μg/mL, it had no cytotoxicity in HK-2 cells, and 100 μg/mL APS pretreatment could significantly mitigate the decrease of cell activity induced by LPS ( P < 0.05 ). Compared with the LPS group, APS pretreatment could inhibit the expression of inflammatory factors including TNF-α, IL-1 β, IL-6, and IL-8 (all P < 0.05 ), reducing the number of apoptotic cells ( P < 0.05 ), suppressing the expression of caspase-3, caspase-9, and Bax, but upregulating the expression levels of Bcl-2. In ERS, APS pretreatment inhibited LPS-induced upregulation of CHOP and GRP78. Moreover, in EMT, APS pretreatment could inhibit the morphological changes of cells, downregulate the migration, decrease the expression of EMT biomarkers, and inhibit the process of EMT. Conclusion. APS could alleviate sepsis-induced AKI by regulating inflammation, apoptosis, ERS, and EMT.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Xiao ◽  
Junpeng Li ◽  
Lisheng Qiu ◽  
Chuan Jiang ◽  
Yanhui Huang ◽  
...  

Background: Ischemia-reperfusion injury (I/R) strongly affects the prognosis of children with complicated congenital heart diseases (CHDs) who undergo long-term cardiac surgical processes. Recently, the α2-adrenergic receptor agonist Dexmedetomidine (Dex) has been reported to protect cardiomyocytes (CMs) from I/R in cellular models and adult rodent models. However, whether and how Dex may protect human CMs in young children remains largely unknown.Methods and Results: Human ventricular tissue from tetralogy of Fallot (TOF) patients and CMs derived from human-induced pluripotent stem cells (iPSC-CMs) were used to assess whether and how Dex protects human CMs from I/R. The results showed that when pretreated with Dex, the apoptosis marker-TUNEL and cleaved caspase 3 in the ventricular tissue were significantly reduced. In addition, the autophagy marker LC3II was significantly increased compared with that of the control group. When exposed to the hypoxia/reoxygenation process, iPSC-CMs pretreated with Dex also showed reduced TUNEL and cleaved caspase 3 and increased LC3II. When the autophagy inhibitor (3-methyladenine, 3-MA) was applied to the iPSC-CMs, the protective effect of Dex on the CMs was largely blocked. In addition, when the fusion of autophagosomes with lysosomes was blocked by Bafilomycin A1, the degradation of p62 induced by Dex during the autophagy process was suspended. Moreover, when pretreated with Dex, both the human ventricle and the iPSC-CMs expressed more AMP-activated protein kinase (AMPK) and phospho AMPK (pAMPK) during the I/R process. After AMPK knockout or the use of an α2-adrenergic receptor antagonist-yohimbine, the protection of Dex and its enhancement of autophagy were inhibited.Conclusion: Dex protects young human CMs from I/R injury, and α2-adrenergic receptor/AMPK-dependent autophagy plays an important role during this process. Dex may have a therapeutic effect for children with CHD who undergo long-term cardiac surgical processes.


Author(s):  
Lai Wei ◽  
Yinyin Su ◽  
Siyou Tan ◽  
Yi Zou ◽  
Yixun Tang ◽  
...  

The current study set out to investigate the molecular mechanism of electroacupuncture (EA) stimulation at Yanglingquan acupoint (GB34) in hepatic ischemia-reperfusion injury (HIRI) in rats via regulation of the endothelin-1 (ET-1) mediated transforming growth factor-β-activated kinase-1 (TAK1)-c-Jun NH2-terminal kinase (JNK)/p38 signaling pathway. First, EA stimulation was applied to the constructed rat model of HIRI at GB34. Subsequently, the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and myeloperoxidase (MPO) in liver tissues were measured. Apoptotic changes in liver tissues in rats with HIRI were observed using TUNEL staining. Western blot assay was employed to determine the expression patterns of Bcl-2, Bax, c-caspase-3 and the activation of TAK1-JNK/p38 signaling pathway, and immunohistochemistry was conducted to determine the protein expression patterns of c-caspase-3 and ET-1. In addition, ELISA was performed to determine the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in serum. The results demonstrated a significant decline in the activities of AST and ALT and hepatocyte apoptosis in rats with HIRI following EA stimulation. Meanwhile, EA stimulation brought about decreases in the expression levels of Bcl-2, Bax and c-caspase-3, MPO activity, TNF-α, IL-1β and IL-6 in serum, and diminished those of ET-1 in liver tissues, in addition to inhibiting the TAK1-JNK/p38 signaling pathway. Over-expression of ET-1 could counter the inhibitory effects of EA stimulation of HIRI in rats. Together, our findings indicate that EA stimulation at GB34 down-regulates the expression of ET-1, which inhibits the TAK1-JNK/p38 signaling pathway, consequently alleviating HIRI in rats.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1422-1422
Author(s):  
Yoriko Saito ◽  
Naoyuki Uchida ◽  
Satoshi Tanaka ◽  
Mariko Tomizawa-Murasawa ◽  
Nahoko Suzuki ◽  
...  

Abstract Abstract 1422 Poster Board I-445 Acute myeloid leukemia (AML) is associated with poor long-term prognosis despite advances in therapeutic modalities over the past few decades. As leukemia stem cells (LSCs) capable of AML initiation may contribute to recurrent disease, LSC-targeted therapies are required to overcome disease relapse and to improve long-term patient outcomes. We previously reported that human AML CD34+CD38- cells self-renew, generate non-stem leukemic cells, and possess potential to initiate leukemia following engraftment of newborn NOD/SCID/IL2rgKO mice. In the recipient bone marrow (BM), AML LSCs were found to reside preferentially within the endosteal region and exhibited chemotherapy resistance. In addition, we observed that AML cells abutting the BM endosteum were cell cycle quiescent while AML cells in the center of the BM were cycling. Based on these findings, we hypothesized that induction of cell cycle entry in quiescent AML LSCs may increase their susceptibility to chemotherapeutic agents, leading to enhanced elimination of LSCs. To test this hypothesis, we assessed the effect of granulocyte colony-stimulating factor (G-CSF) on cell cycle status and chemotherapy susceptibility of primary human AML LSCs in vivo using the NOD/SCID/IL2rgKO xenotransplantation model. In AML-engrafted recipient mice transplanted with LSCs from seven AML patients, flow cytometric analyses demonstrated a significant reduction of quiescent LSCs following 300μg/kg G-CSF sc daily for 5 days (%G0 within hCD34+CD38- BM cells (mean+/-s.e.m): 49.2+/-2.6 (n=47) and 20.5+/-2.0 (n=36), control and G-CSF treated recipients, respectively, p<0.0001 by two-tailed t test). Direct examination of recipient BM in situ revealed cell cycle entry of human AML cells abutting the BM endosteum as evidenced by increased Ki67 expression. Next we developed an in vivo treatment model evaluating the effect of cell cycle induction on chemotherapy-responsiveness of human primary AML LSCs. Human AML-engrafted recipients received AraC alone (1g/kg ip daily for 2 days) or G-CSF followed by AraC (300μg/kg G-CSF sc daily for 5 days with 1g/kg AraC ip daily on days 4 and 5). The proportion of viable active caspase 3-negative human LSCs decreased significantly with pre-chemotherapy cell cycle induction (% active caspase 3-negative hCD34+CD38- BM cell (mean+/-s.e.m.): 82.7+/-1.3% (n=33) and 40.4+/- 3.1% (n=30), AraC alone- and G-CSF followed by AraC-treated recipients, respectively, p<0.0001 by two-tailed t test). TUNEL staining of the recipient BM showed increased apoptosis of AML cells abutting the BM endosteum in recipients receiving AraC following cell cycle induction. Limiting dilution serial transplantation of residual viable human AML cells in the BM of treated recipients showed 100-fold reduction in the frequency of LSCs capable of initiating AML in secondary recipients (BM LSC frequency: 1/560 (n=125) and 1/55,076 (n=109), AraC alone- and G-CSF then AraC-treated recipients, respectively, p=0.0001 by two-tailed t test). At 24 weeks post-transplantation, 89.4% of secondary recipients of G-CSF followed by AraC-treated mice survived compared with only 2.0% survival in secondary recipients of AraC alone-treated mice (p<0.0001, survival estimated by Kaplan-Meier method). These findings indicate that cell cycle status is a key determinant of LSC chemo-responsiveness and that therapeutic strategies promoting LSC cell cycle entry may improve outcomes in AML. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document