scholarly journals Mulligan Knee Taping Using Both Elastic and Rigid Tape Reduces Pain and Alters Lower Limb Biomechanics in Female Patients With Patellofemoral Pain

2020 ◽  
Vol 8 (5) ◽  
pp. 232596712092167
Author(s):  
Grant J.K. Mackay ◽  
Sarah M. Stearne ◽  
Catherine Y. Wild ◽  
Erin P. Nugent ◽  
Alexander P. Murdock ◽  
...  

Background: Evidence supports the use of Mulligan knee taping in managing patellofemoral pain (PFP). However, no studies have compared the efficacy of rigid and elastic tape using this technique. Hypothesis: Mulligan knee taping applied with both rigid and elastic tape will produce similar reductions in knee pain, hip internal rotation, and knee flexion moments compared with no tape. Elastic tape will also be more comfortable than rigid tape. Study Design: Controlled laboratory study. Methods: A total of 19 female patients (mean age, 26.5 ± 4.5 years) with PFP performed a self-selected pain provocative task, single-leg squat (SLSq) task, and running task while wearing Mulligan knee taping applied with rigid tape, elastic tape at 100% tension, and no tape. Pain and taping comfort were recorded using 11-point numeric rating scales. An 18-camera motion capture system and in-ground force plates recorded 3-dimensional lower limb kinematics and kinetics for the SLSq and running tasks. Statistical analysis involved a series of repeated-measures analyses of variance. The Wilcoxon signed rank test was used for analyzing taping comfort. Results: Compared with no tape, both rigid and elastic tape significantly reduced pain during the pain provocative task (mean difference [MD], –0.97 [95% CI, –1.57 to –0.38] and –1.42 [95% CI, –2.20 to –0.64], respectively), SLSq (MD, –1.26 [95% CI, –2.23 to –0.30] and –1.13 [95% CI, –2.09 to –0.17], respectively), and running tasks (MD, –1.24 [95% CI, –2.11 to –0.37] and –1.16 [95% CI, –1.86 to –0.46], respectively). Elastic tape was significantly more comfortable than rigid tape generally ( P = .005) and during activity ( P = .022). Compared with no tape, both rigid and elastic tape produced increased knee internal rotation at initial contact during the running task (MD, 5.5° [95% CI, 3.6° to 7.4°] and 5.9° [95% CI, 3.9° to 7.9°], respectively) and at the commencement of knee flexion during the SLSq task (MD, 5.8° [95% CI, 4.5° to 7.0°] and 5.8° [95% CI, 4.1° to 7.4°], respectively), greater peak knee internal rotation during the running (MD, 1.8° [95% CI, 0.4° to 3.3°] and 2.2° [95% CI, 0.9° to 3.6°], respectively) and SLSq tasks (MD, 3.2° [95% CI, 2.1° to 4.3°] and 3.8° [95% CI, 2.3° to 5.2°], respectively), and decreased knee internal rotation range of motion during the running (MD, –3.6° [95% CI, –6.1° to –1.1°] and –3.7° [95% CI, –6.2° to –1.2°], respectively) and SLSq tasks (MD, –2.5° [95% CI, –3.9° to –1.2°] and –2.0° [95% CI, –3.2° to –0.9°], respectively). Conclusion: Mulligan knee taping with both rigid and elastic tape reduced pain across all 3 tasks and altered tibiofemoral rotation during the SLSq and running tasks. Clinical Relevance: Both taping methods reduced pain and altered lower limb biomechanics. Elastic tape may be chosen clinically for comfort reasons.

2021 ◽  
Author(s):  
Jodie A Wills ◽  
David J Saxby ◽  
Gavin K Lenton ◽  
Timothy L A Doyle

ABSTRACT Introduction The purpose of this study was to investigate sex-specific lower limb biomechanical adaptations during a standardized load carriage task in response to a targeted physical training program. Materials and Methods Twenty-five healthy civilians (males [n = 13] and females [n = 12]) completed a load carriage task (5 km at 5.5 km·h−1, wearing a 23 kg vest) before and after a 10-week lower-body–focused training program. Kinematics and ground reaction force data were collected during the task and were used to estimate lower limb joint kinematics and kinetics (i.e., moments and powers). Direct statistical comparisons were not conducted due to different data collection protocols between sexes. A two-way repeated measures ANOVA tested for significant interactions between, and main effects of training and distance marched for male and female data, respectively. Results Primary kinematic and kinetic changes were observed at the knee and ankle joints for males and at the hip and knee joints for females. Knee joint moments increased for both sexes over the 5 km distance marched (P > .05), with males demonstrating significant reductions in peak knee joint extension after training. Hip adduction, internal rotation, and knee internal rotation angles significantly increased after the 5 km load carriage task for females but not males. Conclusion Differences in adaptive gait strategies between sexes indicate that physical training needs to be tailored to sex-specific requirements to meet standardized load carriage task demands. The findings highlighted previously unfound sex-specific responses that could inform military training and facilitate the integration of female soldiers into physically demanding military roles.


2018 ◽  
Vol 39 (13) ◽  
pp. 1009-1017 ◽  
Author(s):  
Yumeng Li ◽  
Jupil Ko ◽  
Marika Walker ◽  
Cathleen Brown ◽  
Julianne Schmidt ◽  
...  

AbstractThe primary purpose of the study was to determine whether atypical knee biomechanics are exhibited during landing on an inverted surface. A seven-camera motion analysis system and two force plates were used to collect lower extremity biomechanics from two groups of female participants: 21 subjects with chronic ankle instability (CAI) and 21 with pair-matched controls. Subjects performed ten landings onto inverted and flat platforms on the CAI/matched and non-test limbs, respectively. Knee and ankle joint angles, joint angular displacements, joint moments and eccentric work were calculated during the landing phase and/or at the initial contact. Paired t-tests were used to compare between-group differences (p<0.05). We observed that CAI group displayed a significantly increased knee flexion angle, knee flexion displacement, peak knee extension moment and internal rotation moment, and eccentric work in the sagittal plane, possibly due to altered ankle biomechanics. Participants with CAI employed some compensatory strategy to improve their ankle and postural stability during landing onto the tilted surface. The increased knee extension and internal rotation moments of CAI participants could potentially result in a greater ACL loading. In future studies, it may be worthwhile to measure or estimate the ACL loading to confirm whether CAI could relate to the mechanism of ACL injury.


2009 ◽  
Vol 99 (6) ◽  
pp. 503-511 ◽  
Author(s):  
Thales R. Souza ◽  
Rafael Z. Pinto ◽  
Renato G. Trede ◽  
Renata N. Kirkwood ◽  
Antônio E. Pertence ◽  
...  

Background: The influence of distal mechanical factors that change the interaction between the forefoot and the support surface on lower-limb kinematics is not well established. This study investigated the effects of the use of lateral wedges under the forefoot on the kinematics of the lower extremity during the stance phase of walking. Methods: Sixteen healthy young adults participated in this repeated-measures study. They walked wearing flat sandals and laterally wedged sandals, which were medially inclined only in the forefoot. One wedged sandal had a forefoot lateral wedge of 5° and the other wedged sandal had a forefoot lateral wedge of 10°. Kinematic variables of the lower extremity, theoretically considered clinically relevant for injury development, were measured with a three-dimensional motion analysis system. The variables were evaluated for three subphases of stance: loading response, midstance, and late stance. Results: The 5° laterally wedged sandal increased rearfoot eversion during midstance and the 10° laterally wedged sandal increased rearfoot eversion during mid- and late stances, in comparison to the use of flat sandals. The 10° laterally wedged sandal produced greater internal rotation of the shank relative to the pelvis and of the hip joint, during the midstance, also compared to the use of flat sandals. Conclusions: Lateral wedges under the forefoot increase rearfoot eversion during mid-and late stances and may cause proximal kinematic changes throughout the lower-extremity kinetic chain. Distal mechanical factors should be clinically addressed when a patient presents late excessive rearfoot eversion during walking. (J Am Podiatr Med Assoc 99(6): 503–511, 2009)


2013 ◽  
Vol 37 (6) ◽  
pp. 465-470 ◽  
Author(s):  
Mokhtar Arazpour ◽  
Tahmoures T Notarki ◽  
Ahmadali Salimi ◽  
Monireh A Bani ◽  
Hoda Nabavi ◽  
...  

Background: Although knee braces are used by individuals with patellofemoral pain syndrome, the effect of patellofemoral bracing on knee flexion during walking has not been elucidated. Aim: The purpose of this study was to evaluate the effect of patellofemoral bracing on sagittal plane knee joint kinematics and temporal spatial parameters during walking in individuals with patellofemoral pain syndrome. Study design: Quasi-experimental. Methods: Ten subjects with a diagnosis of patellofemoral pain syndrome were fitted with a knee brace incorporating an infrapatellar strap. Testing was performed at baseline and after 6 weeks of use. Gait analysis and a visual analog scale were used to assess outcomes in this study. Results: A 59.6% decrease in pain was reported by using bracing. Bracing significantly improved speed of walking ( p ≤ 0.001) and step length ( p ≤ 0.001). The mean cadence was also increased following 6 weeks of patellofemoral brace use, but this was not significant ( p = 0.077). Knee flexion angles improved during initial contact, loading response, and mid-swing ( p ≤ 0.001) after 6 weeks of patellofemoral brace use. Conclusion: Knee orthoses resulted in decreased pain, improved temporal spatial parameters (speed of walking and step length), and increased knee flexion angles during ambulation in patients with patellofemoral pain syndrome. Clinical relevance The results of this study demonstrate a positive effect of patellofemoral bracing in improving specific gait parameters and provide evidence to support its use as a conservative treatment.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Angel Yañez-Álvarez ◽  
Beatriz Bermúdez-Pulgarín ◽  
Sergio Hernández-Sánchez ◽  
Manuel Albornoz-Cabello

Abstract Background Patellofemoral pain is a prevalent condition in the general population, especially in women, and produces functional impairment in patients. Therapeutic exercise is considered an essential part of the conservative management. The use of vibration platforms may help improve strength and function and reduce pain in patients with knee disorders. The aim of this investigation was to determine the effects of adding whole body vibration (vertical, vibration frequency of 40 Hz, with an amplitude from 2 to 4 mm) to an exercise protocol for pain and disability in adults with patellofemoral pain. Methods A randomised clinical trial was designed, where 50 subjects were randomly distributed into either an exercise group plus whole body vibration or a control group. Pain, knee function (self-reported questionnaire) and range of motion and lower limb functionality were assessed at baseline and at 4 weeks. The experimental group performed 12 supervised sessions of hip, knee and core strengthening exercises on a vibration platform 3 times per week during 4 weeks. The control group followed the same protocol but without vibration stimuli. Differences in outcome measures were explored using an analysis of the variance of 2 repeated measures. Effect sizes were estimated using Square Eta (η2). Significant level was set al P < 0.05. Results Statistically significant differences were found after intervention in favour of the experimental group in the between-groups comparison and in the interaction of the experimental group before and after treatment in terms of pain perception (P = 0.000; η2 = 0.63) and function outcomes scores (P = 0.000; η2 0.39 and 0.51 for lower limb functional scale and Kujala scores respectively). Conclusion A 4-week whole body vibration exercise programme reduces pain level intensity and improves lower limb functionality in patellofemoral pain patients and is more effective than exercise alone in improving pain and function in the short-term. Trial registration ClinicalTrials.gov (NCT04031248). This study was prospectively registered on the 24th July, 2019.


2021 ◽  
Vol 11 (24) ◽  
pp. 12144
Author(s):  
Masen Zhang ◽  
Huijuan Shi ◽  
Hui Liu ◽  
Xinglong Zhou

The heel-to-toe drop of running shoes is a key parameter influencing lower extremity kinematics during running. Previous studies testing running shoes with lower or larger drops generally used minimalist or maximalist shoes, where the factors outside of the drop may lead to the observed changes in running biomechanics. Therefore, our aim was to compare the strike patterns, impact force, and lower extremity biomechanics when running in shoes that varied only in their drops. Eighteen habitual rearfoot strikers performed trials wearing running shoes with four drop conditions: 15 mm, 10 mm, 5 mm, and without a drop. Three-dimensional (3D) tracks of the reflective markers and impact force were synchronously collected using a video graphic acquisition system and two force plates. The biomechanical parameters were compared among the four drop conditions using one-way ANOVA of repeated measures. A greater foot inclination angle (p = 0.001, ηp2 = 0.36) at initial contact and a lower vertical loading rate (p = 0.002, ηp2 = 0.32) during the standing phase were found when running in shoes with large drops compared with running in shoes without a drop. Running in shoes with large drops, as opposed to without, significantly increased the peak knee extension moment (p = 0.002, ηp2 = 0.27), but decreased the peak ankle eversion moment (p = 0.001, ηp2 = 0.35). These findings suggest that the heel-to-toe drop of running shoes significantly influences the running pattern and the loading on lower extremity joints. Running shoes with large drops may be disadvantageous for runners with knee weakness and advantageous for runners with ankle weakness.


2005 ◽  
Vol 37 (Supplement) ◽  
pp. S278
Author(s):  
Scott G. McLean ◽  
Xuemei Huang ◽  
Antonie J. van den Bogert

2016 ◽  
Vol 44 (7) ◽  
pp. 1753-1761 ◽  
Author(s):  
Katie A. Ewing ◽  
Rezaul K. Begg ◽  
Mary P. Galea ◽  
Peter V.S. Lee

Background: Anterior cruciate ligament (ACL) injuries commonly occur during landing maneuvers. Prophylactic knee braces were introduced to reduce the risk of ACL injuries, but their effectiveness is debated. Hypotheses: We hypothesized that bracing would improve biomechanical factors previously related to the risk of ACL injuries, such as increased hip and knee flexion angles at initial contact and at peak vertical ground-reaction force (GRF), increased ankle plantar flexion angles at initial contact, decreased peak GRFs, and decreased peak knee extension moment. We also hypothesized that bracing would increase the negative power and work of the hip joint and would decrease the negative power and work of the knee and ankle joints. Study Design: Controlled laboratory study. Methods: Three-dimensional motion and force plate data were collected from 8 female and 7 male recreational athletes performing double-leg drop landings from 0.30 m and 0.60 m with and without a prophylactic knee brace. GRFs, joint angles, moments, power, and work were calculated for each athlete with and without a knee brace. Results: Prophylactic knee bracing increased the hip flexion angle at peak GRF by 5.56° ( P < .001), knee flexion angle at peak GRF by 4.75° ( P = .001), and peak hip extension moment by 0.44 N·m/kg ( P < .001). Bracing also increased the peak hip negative power by 4.89 W/kg ( P = .002) and hip negative work by 0.14 J/kg ( P = .001) but did not result in significant differences in the energetics of the knee and ankle. No differences in peak GRFs and peak knee extension moment were observed with bracing. Conclusion: The application of a prophylactic knee brace resulted in improvements in important biomechanical factors associated with the risk of ACL injuries. Clinical Relevance: Prophylactic knee braces may help reduce the risk of noncontact knee injuries in recreational and professional athletes while playing sports. Further studies should investigate different types of prophylactic knee braces in conjunction with existing training interventions so that the sports medicine community can better assess the effectiveness of prophylactic knee bracing.


2018 ◽  
Vol 108 (3) ◽  
pp. 231-235 ◽  
Author(s):  
Maedeh Farzadi ◽  
Zahra Safaeepour ◽  
Hoda Nabavi ◽  
Masumeh Bagherzadeh Cham ◽  
Mohammad Ebrahim Mousavi

Background: Rocker shoes are commonly prescribed to healthy and pathologic populations to decrease stress on the lower limbs. An optimal rocker shoe design must consider both toe and heel rockers. Heel rockers are as effective as toe rockers in relieving foot plantar pressures. However, most studies have focused on the position of toe rockers. The aim of this study was to assess the effect of different heel rocker apex placements on lower-limb kinetics and kinematics. Methods: Eighteen healthy females participated in this study. Three pairs of rocker shoes with rocker apex positions anterior to the medial malleolus (shoe A), at the medial malleolus (shoe B), and posterior to the medial malleolus (shoe C) were fabricated and then compared with a flat shoe (shoe D). Kinetic and kinematic data were collected, and lower-extremity joint ranges of motion and moments were calculated. Results: Ankle range of motion was increased by shoe C (P = .04) during initial contact and by shoe A (P = .02) during single-limb support. Peak knee moment was significantly larger for shoes A and B (P &lt; .05) during single-limb support. Conclusions: Results showed that forward and backward shifting of the heel rocker apex could change the knee moment and ankle joint range of motion in the stance phase of gait. Therefore, placement of the heel rocker in a rocker-bottom shoe can be manipulated to promote the desired lower-limb motion, at least in healthy individuals.


Sign in / Sign up

Export Citation Format

Share Document