Late Rearfoot Eversion and Lower-limb Internal Rotation Caused by Changes in the Interaction between Forefoot and Support Surface

2009 ◽  
Vol 99 (6) ◽  
pp. 503-511 ◽  
Author(s):  
Thales R. Souza ◽  
Rafael Z. Pinto ◽  
Renato G. Trede ◽  
Renata N. Kirkwood ◽  
Antônio E. Pertence ◽  
...  

Background: The influence of distal mechanical factors that change the interaction between the forefoot and the support surface on lower-limb kinematics is not well established. This study investigated the effects of the use of lateral wedges under the forefoot on the kinematics of the lower extremity during the stance phase of walking. Methods: Sixteen healthy young adults participated in this repeated-measures study. They walked wearing flat sandals and laterally wedged sandals, which were medially inclined only in the forefoot. One wedged sandal had a forefoot lateral wedge of 5° and the other wedged sandal had a forefoot lateral wedge of 10°. Kinematic variables of the lower extremity, theoretically considered clinically relevant for injury development, were measured with a three-dimensional motion analysis system. The variables were evaluated for three subphases of stance: loading response, midstance, and late stance. Results: The 5° laterally wedged sandal increased rearfoot eversion during midstance and the 10° laterally wedged sandal increased rearfoot eversion during mid- and late stances, in comparison to the use of flat sandals. The 10° laterally wedged sandal produced greater internal rotation of the shank relative to the pelvis and of the hip joint, during the midstance, also compared to the use of flat sandals. Conclusions: Lateral wedges under the forefoot increase rearfoot eversion during mid-and late stances and may cause proximal kinematic changes throughout the lower-extremity kinetic chain. Distal mechanical factors should be clinically addressed when a patient presents late excessive rearfoot eversion during walking. (J Am Podiatr Med Assoc 99(6): 503–511, 2009)

2014 ◽  
Vol 10 (4) ◽  
pp. 207-214 ◽  
Author(s):  
J. Sinclair ◽  
A. Greenhalgh ◽  
P.J. Taylor ◽  
I. Bentley

There has yet to be a combined analysis of the kinetics and three-dimensional kinematics of running at various degrees of inclination. The aim of the current study was to investigate the influence of treadmill running at various inclines (flat, 5, 10 and 15 degrees) on three-dimensional kinematics of the lower extremities and accelerations measured at the tibia. Ten male participants ran at 4.0 m/s at the four different inclinations. Three-dimensional lower extremity kinematics and tibial accelerations were quantified and contrasted using repeated measures ANOVA's. Tibial acceleration parameters were reduced significantly as a function of running incline, whilst tibial internal rotation was significant greater at 15° compared to flat. This study confirms that differences in both kinetics and kinematics are mediated through alterations in running inclination. From a clinical perspective, those who are susceptible/ recovering from injury may wish to utilise an incline in their training.


2015 ◽  
Vol 40 (4) ◽  
pp. 436-446 ◽  
Author(s):  
Caleb Wegener ◽  
Katrin Wegener ◽  
Richard Smith ◽  
Karl-Heinz Schott ◽  
Joshua Burns

Background: Charcot–Marie–Tooth disease is an inherited neuropathy causing progressive weakness, foot deformity and difficulty walking. Clinical anecdotes suggest orthoses designed on the ‘sensorimotor’ paradigm are beneficial for improving gait in Charcot–Marie–Tooth disease. Objectives: Investigate the effect of sensorimotor orthoses on in-shoe and lower limb biomechanics in adults with Charcot–Marie–Tooth disease. Study design: Randomised, repeated-measures, exploratory study. Methods: Eight males and two females with Charcot–Marie–Tooth disease aged 31–68 years fitted with pedorthic shoes and custom-made sensorimotor orthoses were randomly tested at baseline and after 4 weeks of adaptation. In-shoe three-dimensional multi-segment foot and lower limb kinematics and kinetics were collected as were plantar pressures, electromyography and self-reported comfort, stability, cushioning and preference. Results: Compared to the shoe only condition, sensorimotor orthoses increased midfoot eversion and plantarflexion, increased ankle eversion and produced small but significant changes at the knee and hip indicating increased internal rotation. The orthoses increased medial ground reaction forces and increased pressure at the heel, midfoot and toes. There were minimal effects on electromyography. The sensorimotor orthoses were rated higher for comfort, cushioning, stability and preference. Conclusion: Sensorimotor orthoses produced changes in kinematic, kinetic and pressure variables in adults with Charcot–Marie–Tooth disease and were regarded as more comfortable, cushioned and stable during walking. Clinical relevance In this study, the walking ability of patients with Charcot–Marie–Tooth disease improved with the use of foot orthoses designed according to the sensorimotor paradigm. However, the mechanism of action appears to be primarily mechanical in origin. Randomised controlled trials are necessary to evaluate the long-term patient-reported outcomes of sensorimotor orthoses.


2006 ◽  
Vol 15 (3) ◽  
pp. 215-227
Author(s):  
Brian Campbell ◽  
James Yaggie ◽  
Daniel Cipriani

Context:Functional knee braces (FKB) are used prophylactically and in rehabilitation to aide in the functional stability of the knee.Objective:To determine if alterations in select lower extremity moments persist throughout a one hour period in healthy individuals.Design:2X5 repeated measures design.Setting:Biomechanics Laboratory.Subjects:Twenty subjects (14 male and 6 female, mean age 26.5±7 yrs; height 172.4±13 cm; weight 78.6±9 kg), separated into braced (B) and no brace (NB) groups.Intervention:A one-hour exercise program divided into three 20 minute increments.Main Outcome Measures:Synchronized three-dimensional kinematic and kinetic data were collected at 20-minute increments to assess the effect of the FKB on select lower extremity moments and vertical ground reaction forces.Results:Increase in hip moment and a decrease in knee moment were noted immediately after brace application and appeared to persist throughout a one hour bout of exercise.Conclusions:The FKB and the exercise intervention caused decreases in knee joint moments and increases in hip joint moments.


2001 ◽  
Vol 17 (2) ◽  
pp. 153-163 ◽  
Author(s):  
Dorsey S. Williams ◽  
Irene S. McClay ◽  
Joseph Hamill ◽  
Thomas S. Buchanan

High- and low-arched feet have long been thought to function differently. The purpose of this study was to investigate the relationship between arch structure and lower extremity mechanics in runners with extreme pes planus and pes cavus. It was hypothesized that low-arched individuals would exhibit an increased rearfoot eversion excursion, eversion/tibial internal rotation ratio, and increased angular velocity in rearfoot eversion when compared to high-arched runners. In addition, it was hypothesized that high-arched runners would exhibit greater vertical loading rates. Twenty high-arched and 20 low-arched runners with histories of running-related injuries were included in this study. Low-arched runners were found to have increased rearfoot eversion excursion, eversion to tibial internal rotation ratio, and rearfoot eversion velocity. High-arched runners had increased vertical loading rate when compared to low-arched runners. These results suggest that arch structure is associated with specific lower extremity kinematics and kinetics. Differences in these parameters may subsequently lead to differences in injury patterns in high-arched and low-arched runners.


2021 ◽  
Vol 11 (24) ◽  
pp. 12144
Author(s):  
Masen Zhang ◽  
Huijuan Shi ◽  
Hui Liu ◽  
Xinglong Zhou

The heel-to-toe drop of running shoes is a key parameter influencing lower extremity kinematics during running. Previous studies testing running shoes with lower or larger drops generally used minimalist or maximalist shoes, where the factors outside of the drop may lead to the observed changes in running biomechanics. Therefore, our aim was to compare the strike patterns, impact force, and lower extremity biomechanics when running in shoes that varied only in their drops. Eighteen habitual rearfoot strikers performed trials wearing running shoes with four drop conditions: 15 mm, 10 mm, 5 mm, and without a drop. Three-dimensional (3D) tracks of the reflective markers and impact force were synchronously collected using a video graphic acquisition system and two force plates. The biomechanical parameters were compared among the four drop conditions using one-way ANOVA of repeated measures. A greater foot inclination angle (p = 0.001, ηp2 = 0.36) at initial contact and a lower vertical loading rate (p = 0.002, ηp2 = 0.32) during the standing phase were found when running in shoes with large drops compared with running in shoes without a drop. Running in shoes with large drops, as opposed to without, significantly increased the peak knee extension moment (p = 0.002, ηp2 = 0.27), but decreased the peak ankle eversion moment (p = 0.001, ηp2 = 0.35). These findings suggest that the heel-to-toe drop of running shoes significantly influences the running pattern and the loading on lower extremity joints. Running shoes with large drops may be disadvantageous for runners with knee weakness and advantageous for runners with ankle weakness.


2002 ◽  
Vol 23 (7) ◽  
pp. 634-640 ◽  
Author(s):  
Christopher M. Powers ◽  
Pon-Yo Chen ◽  
Stephen F. Reischl ◽  
Jaquelin Perry

Abnormal foot pronation and subsequent rotation of the lower extremity has been hypothesized as being contributory to patellofemoral pain (PFP). The purpose of this study was to test the hypothesis that subjects with PFP would exhibit larger degrees of foot pronation, tibia internal rotation, and femoral internal rotation compared to individuals without PFP. Twenty-four female subjects with a diagnosis of PFP and 17 female subjects without PFP participated. Three-dimensional kinematics of the foot, tibia, and femur segments were recorded during self-selected free-walking trials using a six-camera motion analysis system (VICON). No group differences were found with respect to the magnitude and timing of peak foot pronation and tibia rotation. However, the PFP group demonstrated significantly less femur internal rotation compared the comparison group. These results do not support the hypothesis that individuals with PFP demonstrate excessive foot pronation or tibial internal rotation compared to nonpainful individuals. The finding of decreased internal rotation in the PFP group suggests that this motion may be a compensatory strategy to reduce the quadriceps angle.


2021 ◽  
Author(s):  
Jodie A Wills ◽  
David J Saxby ◽  
Gavin K Lenton ◽  
Timothy L A Doyle

ABSTRACT Introduction The purpose of this study was to investigate sex-specific lower limb biomechanical adaptations during a standardized load carriage task in response to a targeted physical training program. Materials and Methods Twenty-five healthy civilians (males [n = 13] and females [n = 12]) completed a load carriage task (5 km at 5.5 km·h−1, wearing a 23 kg vest) before and after a 10-week lower-body–focused training program. Kinematics and ground reaction force data were collected during the task and were used to estimate lower limb joint kinematics and kinetics (i.e., moments and powers). Direct statistical comparisons were not conducted due to different data collection protocols between sexes. A two-way repeated measures ANOVA tested for significant interactions between, and main effects of training and distance marched for male and female data, respectively. Results Primary kinematic and kinetic changes were observed at the knee and ankle joints for males and at the hip and knee joints for females. Knee joint moments increased for both sexes over the 5 km distance marched (P > .05), with males demonstrating significant reductions in peak knee joint extension after training. Hip adduction, internal rotation, and knee internal rotation angles significantly increased after the 5 km load carriage task for females but not males. Conclusion Differences in adaptive gait strategies between sexes indicate that physical training needs to be tailored to sex-specific requirements to meet standardized load carriage task demands. The findings highlighted previously unfound sex-specific responses that could inform military training and facilitate the integration of female soldiers into physically demanding military roles.


2009 ◽  
Vol 25 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Christopher L. MacLean ◽  
Irene S. Davis ◽  
Joseph Hamill

The purpose of this study was to analyze the influence of varying running shoe midsole composition on lower extremity dynamics with and without a custom foot orthotic intervention. Three-dimensional dynamics were collected on 12 female runners who had completed 6 weeks of custom foot orthotic therapy. Participants completed running trials in 3 running shoe midsole conditions—with and without a custom foot orthotic intervention. Results from the current study revealed that only maximum rearfoot eversion velocity was influenced by the midsole durometer of the shoe. Maximum rearfoot eversion velocity was significantly decreased for the hard shoe compared with the soft shoe. However, the orthotic intervention in the footwear led to significant decreases in several dynamic variables. The results suggest that the major component influencing the rearfoot dynamics was the orthotic device and not the shoe composition. In addition, data suggest that the foot orthoses appear to compensate for the lesser shoe stability enabling it to function in a way similar to that of a shoe of greater stability.


2020 ◽  
Vol 8 (5) ◽  
pp. 232596712092167
Author(s):  
Grant J.K. Mackay ◽  
Sarah M. Stearne ◽  
Catherine Y. Wild ◽  
Erin P. Nugent ◽  
Alexander P. Murdock ◽  
...  

Background: Evidence supports the use of Mulligan knee taping in managing patellofemoral pain (PFP). However, no studies have compared the efficacy of rigid and elastic tape using this technique. Hypothesis: Mulligan knee taping applied with both rigid and elastic tape will produce similar reductions in knee pain, hip internal rotation, and knee flexion moments compared with no tape. Elastic tape will also be more comfortable than rigid tape. Study Design: Controlled laboratory study. Methods: A total of 19 female patients (mean age, 26.5 ± 4.5 years) with PFP performed a self-selected pain provocative task, single-leg squat (SLSq) task, and running task while wearing Mulligan knee taping applied with rigid tape, elastic tape at 100% tension, and no tape. Pain and taping comfort were recorded using 11-point numeric rating scales. An 18-camera motion capture system and in-ground force plates recorded 3-dimensional lower limb kinematics and kinetics for the SLSq and running tasks. Statistical analysis involved a series of repeated-measures analyses of variance. The Wilcoxon signed rank test was used for analyzing taping comfort. Results: Compared with no tape, both rigid and elastic tape significantly reduced pain during the pain provocative task (mean difference [MD], –0.97 [95% CI, –1.57 to –0.38] and –1.42 [95% CI, –2.20 to –0.64], respectively), SLSq (MD, –1.26 [95% CI, –2.23 to –0.30] and –1.13 [95% CI, –2.09 to –0.17], respectively), and running tasks (MD, –1.24 [95% CI, –2.11 to –0.37] and –1.16 [95% CI, –1.86 to –0.46], respectively). Elastic tape was significantly more comfortable than rigid tape generally ( P = .005) and during activity ( P = .022). Compared with no tape, both rigid and elastic tape produced increased knee internal rotation at initial contact during the running task (MD, 5.5° [95% CI, 3.6° to 7.4°] and 5.9° [95% CI, 3.9° to 7.9°], respectively) and at the commencement of knee flexion during the SLSq task (MD, 5.8° [95% CI, 4.5° to 7.0°] and 5.8° [95% CI, 4.1° to 7.4°], respectively), greater peak knee internal rotation during the running (MD, 1.8° [95% CI, 0.4° to 3.3°] and 2.2° [95% CI, 0.9° to 3.6°], respectively) and SLSq tasks (MD, 3.2° [95% CI, 2.1° to 4.3°] and 3.8° [95% CI, 2.3° to 5.2°], respectively), and decreased knee internal rotation range of motion during the running (MD, –3.6° [95% CI, –6.1° to –1.1°] and –3.7° [95% CI, –6.2° to –1.2°], respectively) and SLSq tasks (MD, –2.5° [95% CI, –3.9° to –1.2°] and –2.0° [95% CI, –3.2° to –0.9°], respectively). Conclusion: Mulligan knee taping with both rigid and elastic tape reduced pain across all 3 tasks and altered tibiofemoral rotation during the SLSq and running tasks. Clinical Relevance: Both taping methods reduced pain and altered lower limb biomechanics. Elastic tape may be chosen clinically for comfort reasons.


2013 ◽  
Vol 39 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Jonathan Sinclair ◽  
Paul John Taylor ◽  
Sarah Jane Hobbs

Abstract Errors in kinematic data are referred to as noise and are an undesirable portion of any waveform. Noise is typically removed using a low-pass filter which removes the high frequency components of the signal. The selection of an optimal frequency cut-off is very important when processing kinematic information and a number of techniques exists for the determination of an optimal frequency cut-off. Despite the importance of cut-off frequency to the efficacy of kinematic analyses there is currently a paucity of research examining the influence of different cut-off frequencies on the resultant 3-D kinematic waveforms and discrete parameters. Twenty participants ran at 4.0 m•s-1 as lower extremity kinematics in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. The data were filtered at a range of cut-off frequencies and the discrete kinematic parameters were examined using repeated measures ANOVA’s. The similarity between the raw and filtered waveforms were examined using intra-class correlations. The results show that the cut-off frequency has a significant influence on the discrete kinematic measure across displacement and derivative information in all three planes of rotation. Furthermore, it was also revealed that as the cut-off frequency decreased the attenuation of the kinematic waveforms became more pronounced, particularly in the coronal and transverse planes at the second derivative. In conclusion, this investigation provides new information regarding the influence of digital filtering on lower extremity kinematics and re-emphasizes the importance of selecting the correct cut-off frequency.


Sign in / Sign up

Export Citation Format

Share Document