Association Between Initial Contact Lower Limb Posture And Peak Knee Valgus Moment During Sidestepping

2005 ◽  
Vol 37 (Supplement) ◽  
pp. S278
Author(s):  
Scott G. McLean ◽  
Xuemei Huang ◽  
Antonie J. van den Bogert
2005 ◽  
Vol 37 (Supplement) ◽  
pp. S278
Author(s):  
Scott G. McLean ◽  
Xuemei Huang ◽  
Antonie J. van den Bogert

2018 ◽  
Vol 108 (3) ◽  
pp. 231-235 ◽  
Author(s):  
Maedeh Farzadi ◽  
Zahra Safaeepour ◽  
Hoda Nabavi ◽  
Masumeh Bagherzadeh Cham ◽  
Mohammad Ebrahim Mousavi

Background: Rocker shoes are commonly prescribed to healthy and pathologic populations to decrease stress on the lower limbs. An optimal rocker shoe design must consider both toe and heel rockers. Heel rockers are as effective as toe rockers in relieving foot plantar pressures. However, most studies have focused on the position of toe rockers. The aim of this study was to assess the effect of different heel rocker apex placements on lower-limb kinetics and kinematics. Methods: Eighteen healthy females participated in this study. Three pairs of rocker shoes with rocker apex positions anterior to the medial malleolus (shoe A), at the medial malleolus (shoe B), and posterior to the medial malleolus (shoe C) were fabricated and then compared with a flat shoe (shoe D). Kinetic and kinematic data were collected, and lower-extremity joint ranges of motion and moments were calculated. Results: Ankle range of motion was increased by shoe C (P = .04) during initial contact and by shoe A (P = .02) during single-limb support. Peak knee moment was significantly larger for shoes A and B (P < .05) during single-limb support. Conclusions: Results showed that forward and backward shifting of the heel rocker apex could change the knee moment and ankle joint range of motion in the stance phase of gait. Therefore, placement of the heel rocker in a rocker-bottom shoe can be manipulated to promote the desired lower-limb motion, at least in healthy individuals.


2013 ◽  
Vol 48 (2) ◽  
pp. 161-171 ◽  
Author(s):  
Jena Etnoyer ◽  
Nelson Cortes ◽  
Stacie I. Ringleb ◽  
Bonnie L. Van Lunen ◽  
James A. Onate

Context: Instruction can be used to alter the biomechanical movement patterns associated with anterior cruciate ligament (ACL) injuries. Objective: To determine the effects of instruction through combination (self and expert) feedback or self-feedback on lower extremity kinematics during the box–drop-jump task, running–stop-jump task, and sidestep-cutting maneuver over time in college-aged female athletes. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: Forty-three physically active women (age = 21.47 ± 1.55 years, height = 1.65 ± 0.08 m, mass = 63.78 ± 12.00 kg) with no history of ACL or lower extremity injuries or surgery in the 2 months before the study were assigned randomly to 3 groups: self-feedback (SE), combination feedback (CB), or control (CT). Intervention(s): Participants performed a box–drop-jump task for the pretest and then received feedback about their landing mechanics. After the intervention, they performed an immediate posttest of the box–drop-jump task and a running–stop-jump transfer test. Participants returned 1 month later for a retention test of each task and a sidestep-cutting maneuver. Kinematic data were collected with an 8-camera system sampled at 500 Hz. Main Outcome Measure(s): The independent variables were feedback group (3), test time (3), and task (3). The dependent variables were knee- and hip-flexion, knee-valgus, and hip- abduction kinematics at initial contact and at peak knee flexion. Results: For the box–drop-jump task, knee- and hip-flexion angles at initial contact were greater at the posttest than at the retention test (P < .001). At peak knee flexion, hip flexion was greater at the posttest than at the pretest (P = .003) and was greater at the retention test than at the pretest (P = .04); knee valgus was greater at the retention test than at the pretest (P = .03) and posttest (P = .02). Peak knee flexion was greater for the CB than the SE group (P = .03) during the box–drop-jump task at posttest. For the running–stop-jump task at the posttest, the CB group had greater peak knee flexion than the SE and CT (P ≤ .05). Conclusions: Our results suggest that feedback involving a combination of self-feedback and expert video feedback with oral instruction effectively improved lower extremity kinematics during jump-landing tasks.


2020 ◽  
Vol 8 (5) ◽  
pp. 232596712092167
Author(s):  
Grant J.K. Mackay ◽  
Sarah M. Stearne ◽  
Catherine Y. Wild ◽  
Erin P. Nugent ◽  
Alexander P. Murdock ◽  
...  

Background: Evidence supports the use of Mulligan knee taping in managing patellofemoral pain (PFP). However, no studies have compared the efficacy of rigid and elastic tape using this technique. Hypothesis: Mulligan knee taping applied with both rigid and elastic tape will produce similar reductions in knee pain, hip internal rotation, and knee flexion moments compared with no tape. Elastic tape will also be more comfortable than rigid tape. Study Design: Controlled laboratory study. Methods: A total of 19 female patients (mean age, 26.5 ± 4.5 years) with PFP performed a self-selected pain provocative task, single-leg squat (SLSq) task, and running task while wearing Mulligan knee taping applied with rigid tape, elastic tape at 100% tension, and no tape. Pain and taping comfort were recorded using 11-point numeric rating scales. An 18-camera motion capture system and in-ground force plates recorded 3-dimensional lower limb kinematics and kinetics for the SLSq and running tasks. Statistical analysis involved a series of repeated-measures analyses of variance. The Wilcoxon signed rank test was used for analyzing taping comfort. Results: Compared with no tape, both rigid and elastic tape significantly reduced pain during the pain provocative task (mean difference [MD], –0.97 [95% CI, –1.57 to –0.38] and –1.42 [95% CI, –2.20 to –0.64], respectively), SLSq (MD, –1.26 [95% CI, –2.23 to –0.30] and –1.13 [95% CI, –2.09 to –0.17], respectively), and running tasks (MD, –1.24 [95% CI, –2.11 to –0.37] and –1.16 [95% CI, –1.86 to –0.46], respectively). Elastic tape was significantly more comfortable than rigid tape generally ( P = .005) and during activity ( P = .022). Compared with no tape, both rigid and elastic tape produced increased knee internal rotation at initial contact during the running task (MD, 5.5° [95% CI, 3.6° to 7.4°] and 5.9° [95% CI, 3.9° to 7.9°], respectively) and at the commencement of knee flexion during the SLSq task (MD, 5.8° [95% CI, 4.5° to 7.0°] and 5.8° [95% CI, 4.1° to 7.4°], respectively), greater peak knee internal rotation during the running (MD, 1.8° [95% CI, 0.4° to 3.3°] and 2.2° [95% CI, 0.9° to 3.6°], respectively) and SLSq tasks (MD, 3.2° [95% CI, 2.1° to 4.3°] and 3.8° [95% CI, 2.3° to 5.2°], respectively), and decreased knee internal rotation range of motion during the running (MD, –3.6° [95% CI, –6.1° to –1.1°] and –3.7° [95% CI, –6.2° to –1.2°], respectively) and SLSq tasks (MD, –2.5° [95% CI, –3.9° to –1.2°] and –2.0° [95% CI, –3.2° to –0.9°], respectively). Conclusion: Mulligan knee taping with both rigid and elastic tape reduced pain across all 3 tasks and altered tibiofemoral rotation during the SLSq and running tasks. Clinical Relevance: Both taping methods reduced pain and altered lower limb biomechanics. Elastic tape may be chosen clinically for comfort reasons.


2021 ◽  
Vol 36 (1) ◽  
pp. 18-26
Author(s):  
Hai-Jung Steffi Shih ◽  
K Michael Rowley ◽  
Kornelia Kulig

OBJECTIVE: Altered ground reaction force (GRF) and joint torsional stiffness are associated with various lower extremity injuries, but these have yet to be examined in dancers with flexor hallucis longus (FHL) tendinopathy. Additionally, a simple, field-friendly kinematic correlate to ground contact kinetics would be useful for clinical application. The purpose of this study was to compare lower extremity biomechanics during takeoff of a dance leap (saut de chat) in dancers with and without FHL tendinopathy, and to examine lower limb posture at initial contact as a clinical correlate of injury-related kinetic factors. METHODS: Motion capture and inverse dynamics were used to analyze saut de chat takeoff performed by 11 uninjured dancers and 8 dancers with FHL tendinopathy. GRF parameters, joint torsional stiffness of the metatarsophalangeal, ankle, and knee joints, and lower extremity posture at initial contact were compared between groups using Welch’s t-tests. RESULTS: Dancers with FHL tendinopathy maintained similar jump height as the uninjured dancers, but exhibited lower peak vertical GRF, longer time to peak force, and less joint torsional stiffness at the metatarsophalangeal, ankle, and knee joints during loading response of the takeoff step. Lower extremity contact angle was smaller and the horizontal distance between center-of-mass and center-of-pressure was greater in dancers with FHL tendinopathy. These two measures of lower limb posture at initial contact were significantly correlated with kinetic factors occurring later in ground contact (R2=0.29-0.51). CONCLUSION: Dancers with FHL tendinopathy demonstrated altered lower extremity kinetics during takeoff of a leap compared to uninjured dancers, which may contribute to, or be a compensation response to, injury


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0015
Author(s):  
Dustin R. Grooms ◽  
Jed A. Diekfuss ◽  
Alexis B. Slutsky-Ganesh ◽  
Cody R. Criss ◽  
Manish Anand ◽  
...  

Background: Anterior cruciate ligament (ACL) injury is secondary to a multifactorial etiology encompassing anatomical, biological, mechanical, and neurological factors. The nature of the injury being primarily due to non-contact mechanics further implicates neural control as a key injury-risk factor, though it has received considerably less study. Purpose: To determine the contribution of neural activity to injury-risk mechanics in ecological sport-specific VR landing scenarios. Methods: Ten female high-school soccer players (15.5±0.85 years; 165.0±6.09 cm; 59.1±11.84 kg) completed a neuroimaging session to capture neural activity during a bilateral leg press and a 3D biomechanics session performing a header within a VR soccer scenario. The bilateral leg press involved four 30 s blocks of repeated bilateral leg presses paced to a metronome beat of 1.2 Hz with 30 s rest between blocks. The VR soccer scenario simulated a corner-kick, requiring the participant to jump and head a virtual soccer ball into a virtual goal (Figure 1A-E). Initial contact and peak knee flexion and abduction angles were extracted during the landing from the header as injury-risk variables of interest and were correlated with neural activity. Results: Evidenced in Table 1 and Figure 1 (bottom row), increased initial contact abduction, increased peak abduction, and decreased peak flexion were associated with increased sensory, visual-spatial, and cerebellar activity (r2= 0.42-0.57, p corrected < .05, z max > 3.1, table & figure 1). Decreased initial contact flexion was associated with increased frontal cortex activity (r2= 0.68, p corrected < .05, z max > 3.1). Conclusion: Reduced neural efficiency (increased activation) of key regions that integrate proprioceptive, visual-spatial, and neurocognitive activity for motor control may influence injury-risk mechanics in sport. The regions found to increase in activity in relation to higher injury-risk mechanics are typically activated to assist with spatial navigation, environmental interaction, and precise motor control. The requirement for athletes to increase their activity for more basic knee motor control may result in fewer neural resources available to maintain knee joint alignment, allocate environmental attention, and handle increased motor coordination demands. These data indicate that strategies to enhance efficiency of visual-spatial and cognitive-motor control during high demand sporting activities is warranted to improve ACL injury-risk reduction. [Figure: see text][Table: see text]


PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0172112 ◽  
Author(s):  
Martin Hora ◽  
Libor Soumar ◽  
Herman Pontzer ◽  
Vladimír Sládek
Keyword(s):  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9813
Author(s):  
Junqing Wang ◽  
Zhen Luo ◽  
Boyi Dai ◽  
Weijie Fu

Background Excessive impact peak forces and vertical load rates are associated with running injuries and have been targeted in gait retraining studies. This study aimed to determine the effects of 12-week cadence retraining on impact peak, vertical load rates and lower extremity biomechanics during running. Methods Twenty-four healthy male recreational runners were randomised into either a 12-week cadence retraining group (n = 12), which included those who ran with a 7.5% increase in preferred cadence, or a control group (n = 12), which included those who ran without any changes in cadence. Kinematics and ground reaction forces were recorded simultaneously to quantify impact force variables and lower extremity kinematics and kinetics. Results Significantly decreased impact peak (1.86 ± 0.30 BW vs. 1.67 ± 0.27 BW, P = 0.003), vertical average load rates (91.59 ± 18.91 BW/s vs. 77.31 ± 15.12 BW/s, P = 0.001) and vertical instantaneous load rates (108.8 ± 24.5 BW/s vs. 92.8 ± 18.5 BW/s, P = 0.001) were observed in the cadence retraining group, while no significant differences were observed in the control group. Foot angles (18.27° ± 5.59° vs. 13.74° ± 2.82°, P = 0.003) and vertical velocities of the centre of gravity (CoG) (0.706 ± 0.115 m/s vs. 0.652 ± 0.091 m/s, P = 0.002) significantly decreased in the cadence retraining group at initial contact, but not in the control group. In addition, vertical excursions of the CoG (0.077 ± 0.01 m vs. 0.069 ± 0.008 m, P = 0.002) and peak knee flexion angles (38.6° ± 5.0° vs. 36.5° ± 5.5°, P < 0.001) significantly decreased whilst lower extremity stiffness significantly increased (34.34 ± 7.08 kN/m vs. 38.61 ± 6.51 kN/m, P = 0.048) in the cadence retraining group. However, no significant differences were observed for those variables in the control group. Conclusion Twelve-week cadence retraining significantly increased the cadence of the cadence retraining group by 5.7%. This increased cadence effectively reduced impact peak and vertical average/instantaneous load rates. Given the close relationship between impact force variables and running injuries, increasing the cadence as a retraining method may potentially reduce the risk of impact-related running injuries.


Author(s):  
Yinghu Peng ◽  
Duo Wai-Chi Wong ◽  
Yan Wang ◽  
Tony Lin-Wei Chen ◽  
Qitao Tan ◽  
...  

Flatfoot is linked to secondary lower limb joint problems, such as patellofemoral pain. This study aimed to investigate the influence of medial posting insoles on the joint mechanics of the lower extremity in adults with flatfoot. Gait analysis was performed on fifteen young adults with flatfoot under two conditions: walking with shoes and foot orthoses (WSFO), and walking with shoes (WS) in random order. The data collected by a vicon system were used to drive the musculoskeletal model to estimate the hip, patellofemoral, ankle, medial and lateral tibiofemoral joint contact forces. The joint contact forces in WSFO and WS conditions were compared. Compared to the WS group, the second peak patellofemoral contact force (p < 0.05) and the peak ankle contact force (p < 0.05) were significantly lower in the WSFO group by 10.2% and 6.8%, respectively. The foot orthosis significantly reduced the peak ankle eversion angle (p < 0.05) and ankle eversion moment (p < 0.05); however, the peak knee adduction moment increased (p < 0.05). The reduction in the patellofemoral joint force and ankle contact force could potentially inhibit flatfoot-induced lower limb joint problems, despite a greater knee adduction moment.


2019 ◽  
Vol 43 (3) ◽  
pp. 316-324
Author(s):  
Kelly A Schmidtbauer ◽  
E Russell Esposito ◽  
Jason M Wilken

Background: Individuals with severe lower extremity injuries often require ankle–foot orthoses to return to normal activities. Ankle–foot orthoses alignment is a key consideration during the clinical fitting process and may be particularly important during dynamic activities such as running. Objective: To investigate how 3° changes in sagittal plane ankle–foot orthoses alignment affect running mechanics. Study design: Controlled laboratory study. Methods: Twelve participants with unilateral lower limb injury ran overground and lower extremity running mechanics were assessed. Participants wore their passive-dynamic ankle–foot orthoses in three alignments: clinically fit neutral, 3° plantarflexed from clinically fit neutral, and 3° dorsiflexed from clinically fit neutral. Results: The 3° changes in sagittal alignment significantly influenced ankle mechanics during running. The plantarflexed alignment significantly decreased the peak ankle plantarflexor moment, peak knee extensor moment, and peak ankle and knee power absorption and generation compared to more dorsiflexed alignments. Alignment also altered footstrike angle, with dorsiflexed alignments associated with a more dorsiflexed footstrike pattern and plantarflexed alignments toward a more plantarflexed footstrike pattern. However, alignment did not influence loading rate. Conclusion: Small changes in ankle–foot orthoses alignment significantly altered running mechanics, including footstrike angle, and knee extensor moments. Understanding how ankle–foot orthoses design parameters affect running mechanics may aid the development of evidence-based prescription guidelines and improve function for ankle–foot orthoses users who perform high-impact activities. Clinical relevance Understanding how ankle–foot orthoses alignment impacts biomechanics should be a consideration when fitting passive-dynamic devices for higher impact activities, such as running. Individual running styles, including footstrike patterns, may be affected by small changes in alignment.


Sign in / Sign up

Export Citation Format

Share Document