Development and Validation of High-Content Analysis for Screening HDAC6-Selective Inhibitors

2021 ◽  
pp. 247255522110024
Author(s):  
Yunhong Nong ◽  
Yanyan Hou ◽  
Yuting Pu ◽  
Si Li ◽  
Yan Lan

Throughout recent decades, histone deacetylase (HDAC) inhibitors have shown encouraging potential in cancer treatment, and several pan-HDAC inhibitors have been approved for treating malignant cancers. Numerous adverse effects of pan-HDAC inhibitors have been reported, however, during preclinical and clinical evaluations. To avoid undesirable responses, an increasing number of investigations are focusing on the development of isotype-selective HDAC inhibitors. In this study, we present an effective and quantitative cellular assay using high-content analysis (HCA) to determine compounds’ inhibition of the activity of HDAC6 and Class I HDAC isoforms, by detecting the acetylation of their corresponding substrates (i.e., α-tubulin and histone H3). Several conditions that are critical for HCA assays, such as cell seeding number, fixation and permeabilization reagent, and antibody dilution, have been fully validated in this study. We used selective HDAC6 inhibitors and inhibitors targeting different HDAC isoforms to optimize and validate the capability of the HCA assay. The results indicated that the HCA assay is a robust assay for quantifying compounds’ selectivity of HDAC6 and Class I HDAC isoforms in cells. Moreover, we screened a panel of compounds for HDAC6 selectivity using this HCA assay, which provided valuable information for the structure–activity relationship (SAR). In summary, our results suggest that the HCA assay is a powerful tool for screening selective HDAC6 inhibitors.

2021 ◽  
Author(s):  
Sara Ahmed ◽  
Alyssa J Manning ◽  
Lindsay Flint ◽  
Divya Awasthi ◽  
Tanya Parish

Mycobacterium tuberculosis is an important global pathogen for which new drugs are urgently required. The ability of the organism to survive and multiply within macrophages may contribute to the lengthy treatment regimen with multiple drugs that are required to cure the infection. We screened the MyriaScreen II diversity library of 10,000 compounds to identify novel inhibitors of M. tuberculosis growth within macrophage-like cells using high content analysis. Hits were selected which inhibited the intramacrophage growth of M. tuberculosis without significant cytotoxicity to infected macrophages. We selected and prioritized compound series based on their biological and physicochemical properties and the novelty of the chemotypes. We identified five chemical classes of interest and conducted limited catalog structure-activity relationship studies to determine their tractability. We tested activity against intracellular and extracellular M.tuberculosis, as well as cytoxicity against murine RAW264.7 and human HepG2 cells. Benzene amide ethers, thiophene carboxamides and thienopyridines were only active against intracellular bacteria, whereas the phenylthiourea series was also active against extracellular bacteria. One member of a phenyl pyrazole series was moderately active against extracellular bacteria. We identified the benzene amide ethers as an interesting series for further work. These new compound classes serve as starting points for the development of novel drugs to target intracellular M. tuberculosis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sara Ahmed ◽  
Alyssa Manning ◽  
Lindsay Flint ◽  
Divya Awasthi ◽  
Yulia Ovechkina ◽  
...  

Mycobacterium tuberculosis is an important global pathogen for which new drugs are urgently required. The ability of the organism to survive and multiply within macrophages may contribute to the lengthy treatment regimen with multiple drugs that are required to cure the infection. We screened the MyriaScreen II diversity library of 10,000 compounds to identify novel inhibitors of M. tuberculosis growth within macrophage-like cells using high content analysis. Hits were selected which inhibited the intramacrophage growth of M. tuberculosis without significant cytotoxicity to infected macrophages. We selected and prioritized compound series based on their biological and physicochemical properties and the novelty of the chemotypes. We identified five chemical classes of interest and conducted limited catalog structure-activity relationship studies to determine their tractability. We tested activity against intracellular and extracellular M. tuberculosis, as well as cytoxicity against murine RAW264.7 and human HepG2 cells. Benzene amide ethers, thiophene carboxamides and thienopyridines were only active against intracellular bacteria, whereas the phenylthiourea series was also active against extracellular bacteria. One member of a phenyl pyrazole series was moderately active against extracellular bacteria. We identified the benzene amide ethers as an interesting series for further work. These new compound classes serve as starting points for the development of novel drugs to target intracellular M. tuberculosis.


2020 ◽  
Vol 20 (31) ◽  
pp. 2830-2842
Author(s):  
Masanao Inagaki ◽  
Toshiyuki Kanemasa ◽  
Takaaki Yokota

Opioids are widely used for pain management in moderate-to-severe pain. However, opioids are associated with adverse events, such as constipation and emesis/vomiting. To reduce these undesired effects, a structure–activity relationship study of morphinan derivatives was conducted, and a promising lead compound with inhibitory effects on opioid receptors was obtained. Further improvement in the potency and pharmacokinetic profiles of the lead compound led to the discovery of naldemedine, which showed anti-constipation and anti-emetic effects against these adverse events that were induced by morphine without influencing morphine’s analgesic effect. Naldemedine was launched in Japan and the USA in 2017 and in the EU in 2019, for treating opioid-induced constipation.


Author(s):  
Jianying Guo ◽  
Peizhe Wang ◽  
Berna Sozen ◽  
Hui Qiu ◽  
Yonglin Zhu ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1488
Author(s):  
Alessandra Ammazzalorso ◽  
Mariangela Agamennone ◽  
Barbara De Filippis ◽  
Marialuigia Fantacuzzi

The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.


2015 ◽  
Vol 7 (4) ◽  
pp. 435-446 ◽  
Author(s):  
Sebastián L. Vega ◽  
Anandika Dhaliwal ◽  
Varun Arvind ◽  
Parth J. Patel ◽  
Nick R. M. Beijer ◽  
...  

Timely classification of stem cell lineage commitment in response to cell–microenvironment interactions using high content analysis of sub-nuclear protein organization.


2013 ◽  
Vol 18 (10) ◽  
pp. 1246-1259 ◽  
Author(s):  
Beverley J. Isherwood ◽  
Rebecca E. Walls ◽  
Mark E. Roberts ◽  
Thomas M. Houslay ◽  
Sandra R. Brave ◽  
...  

Phenotypic screening seeks to identify substances that modulate phenotypes in a desired manner with the aim of progressing first-in-class agents. Successful campaigns require physiological relevance, robust screening, and an ability to deconvolute perturbed pathways. High-content analysis (HCA) is increasingly used in cell biology and offers one approach to prosecution of phenotypic screens, but challenges exist in exploitation where data generated are high volume and complex. We combine development of an organotypic model with novel HCA tools to map phenotypic responses to pharmacological perturbations. We describe implementation for angiogenesis, a process that has long been a focus for therapeutic intervention but has lacked robust models that recapitulate more completely mechanisms involved. The study used human primary endothelial cells in co-culture with stromal fibroblasts to model multiple aspects of angiogenic signaling: cell interactions, proliferation, migration, and differentiation. Multiple quantitative descriptors were derived from automated microscopy using custom-designed algorithms. Data were extracted using a bespoke informatics platform that integrates processing, statistics, and feature display into a streamlined workflow for building and interrogating fingerprints. Ninety compounds were characterized, defining mode of action by phenotype. Our approach for assessing phenotypic outcomes in complex assay models is robust and capable of supporting a range of phenotypic screens at scale.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Bernard Michael Corfe ◽  
Joanna Chowdry ◽  
Gareth J. Griffiths ◽  
Rod P. Benson

Sign in / Sign up

Export Citation Format

Share Document