scholarly journals Toxicity of Combinations of Kinase Pathway Inhibitors to Normal Human Cells in a Three-Dimensional Culture

Author(s):  
Pouria Rafsanjani Nejad ◽  
Pradip Shahi Thakuri ◽  
Sunil Singh ◽  
Astha Lamichhane ◽  
Jacob Heiss ◽  
...  

Resistance to single-agent chemotherapy and molecularly targeted drugs prevents sustained efficacy of treatments. To address this challenge, combination drug treatments have been used to improve outcomes for patients. Potential toxicity of combination treatments is a major concern, however, and has led to the failure of several clinical trials in different cancers. The use of cell-based models of normal tissues in preclinical studies enables testing and identifying toxic effects of drug combinations and facilitates an informed decision-making process for advancing the treatments to animal models and clinical trials. Recently, we established that combinations of molecular inhibitors of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase–protein kinase B (PI3K/Akt) pathways effectively and synergistically inhibit growth of BRAFmut and KRASmut colorectal tumor spheroids by blocking feedback signaling of downstream kinase pathways. These pathways are important for cell proliferation, however, and their simultaneous inhibition may cause toxicity to normal cells. We used a cellular spheroid model to study toxicities of drug combinations to human bone marrow and colon. Our results indicated that MAPK and PI3K/Akt inhibitors used simultaneously were only moderately toxic to bone marrow cells but significantly more toxic to colon cells. Our molecular analysis of proliferative cell activities and housekeeping proteins further corroborated these results. Overall, our approach to identify toxic effects of combinations of cancer drugs to normal cells in three-dimensional cultures will facilitate more informed treatment selections for subsequent animal studies.

2018 ◽  
Vol 16 (05) ◽  
pp. 1850017 ◽  
Author(s):  
Aman Sharma ◽  
Rinkle Rani

Combination drug therapy is considered a better treatment option for various diseases, such as cancer, HIV, hypertension, and infections as compared to targeted drug therapies. Combination or synergism helps to overcome drug resistance, reduction in drug toxicity and dosage. Considering the complexity and heterogeneity among cancer types, drug combination provides promising treatment strategy. Increase in drug combination data raises a challenge for developing a computational approach that can effectively predict drugs synergism. There is a need to model the combination drug screening data to predict new synergistic drug combinations for successful cancer treatment. In such a scenario, machine learning approaches can be used to alleviate the process of drugs synergy prediction. Experimental data from a single-agent or multi-agent drug screens provides feature data for model training. On the contrary, identification of effective drug combination using clinical trials is a time consuming and resource intensive task. This paper attempts to address the aforementioned challenges by developing a computational approach to effectively predict drug synergy. Single-drug efficacy is used for predicting drug synergism. Our approach obviates the need to understand the underlying drug mechanism to predict drug combination synergy. For this purpose, nine machine learning algorithms are trained. It is observed that the Random forest models, in comparison to other models, have shown significant performance. The [Formula: see text]-fold cross-validation is performed to evaluate the robustness of the best predictive model. The proposed approach is applied to mutant-BRAF melanoma and further validated using melanoma cell-lines from AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge dataset.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2960-2960
Author(s):  
Evelyn Kendall Williams ◽  
Dan Y. Zhang ◽  
Ryan J Summers ◽  
Jamie Oakley ◽  
Christopher C. Porter ◽  
...  

Abstract Treatment of pediatric acute lymphoblastic leukemia (ALL) has seen dramatic improvements over the last several decades, leading to survival rates of over 90% for specific groups. However, for patients with relapsed/refractory disease, achieving complete remission remains a significant challenge. To further improve treatment outcomes for these patients, improved functional screens are needed to better match high risk leukemia patients with novel therapeutic strategies. Current functional screens are limited by the large patient samples required, particularly for combination drug screening and evaluation of higher order drug interactions. To that end, this work aims to develop a microfluidic multi-drug and multi-dose chemosensitivity assay to directly test candidate combinations of therapeutics in patient derived ALL cells. This will allow for analysis of response to combinations of 3 small molecule drugs while minimizing required patient sample and reducing experimental workload. Once validated, this assay can be used to identify biomarkers of response to novel combination regimens in pediatric ALL, and ultimately, could be used to prospectively guide therapy in newly diagnosed patients. Specifically, this is accomplished by generating stable, overlapping concentration gradients of small molecule drugs across 3D cultures of leukemia cells with and without human bone marrow derived mesenchymal stem cells (Fig 1A). We have demonstrated the ability to generate and maintain these gradients over 48 hours, and have shown that experimentally generated concentration gradients closely match steady state computational fluid dynamics (CFD) model predictions (Fig 1B). Moreover, exposing a T-ALL cell line (Jurkats) to a single gradient of cytarabine results in a gradient in cell viability. In drug treated devices, increasing drug dose led to decreasing averaged viability, while no appreciable difference was seen in vehicle control devices (Fig 1C). A commonly used 3 drug combination, Daunorubicin, Vincristine, and Prednisolone, was then used to validate the utility of the device for evaluating multi-dose drug combinations. Here, Jurkats were exposed to superimposed concentration gradients of Daunorubicin, Vincristine, and Prednisolone for 48 hours, after which cell viability as a function of concentration was examined. Specifically, a ternary contour map of the average viability across the device was generated, clearly depicting the range of response across the device (Fig 2B). Previous results have demonstrated Jurkats' sensitivity to Daunorubicin as well as Vincristine and relative resistance to Prednisolone, and these results are closely recapitulated in the device. Previous reports in literature have also demonstrated potential for antagonism between anthracyclines and vinca alkaloids, specifically between Doxorubicin and Vincristine in Jurkats (Ehrhardt, 2011). Our results also suggest that some amount of antagonism may exist between Daunorubicin and Vincristine in Jurkats at these concentration ranges tested, evidenced by the high average viability in regions of high vincristine concentrations and mid-range daunorubicin concentrations. Finally, we then used this system to evaluate response to drug combinations in a test patient sample. Specifically, combinations of Vincristine, Prednisolone, and Daunorubicin, as well as combinations of Nelarabine, Etoposide, and Cytoxan were evaluated in a standard risk B-ALL bone marrow aspirate sample. Drug treated devices resulted in significantly reduced viability relative to the vehicle control, with a differential in response observed between the 2 combinations tested (Fig 3A). Moreover, at these drug concentration ranges, it appears that combinations of Etoposide and Ara-G are particularly ineffective relative to other combinations in this sample (Fig 3B). Future studies will work to improve the baseline viability of banked samples in the device, and include testing of fresh leukemia samples as well. We are also working to develop methods to use data collected from these devices to identify synergistic or antagonistic drug combinations, and in the future, can correlate this with clinical outcome metrics as well as biomarkers of response. Tissue samples were provided by the Children's Healthcare of Atlanta Pediatric Bio-Repository. Other investigators may have received specimens from the same subjects. Figure 1 Figure 1. Disclosures Lam: Sanguina, Inc.: Current holder of individual stocks in a privately-held company.


Author(s):  
D. C. Swartzendruber ◽  
Norma L. Idoyaga-Vargas

The radionuclide gallium-67 (67Ga) localizes preferentially but not specifically in many human and experimental soft-tissue tumors. Because of this localization, 67Ga is used in clinical trials to detect humar. cancers by external scintiscanning methods. However, the fact that 67Ga does not localize specifically in tumors requires for its eventual clinical usefulness a fuller understanding of the mechanisms that control its deposition in both malignant and normal cells. We have previously reported that 67Ga localizes in lysosomal-like bodies, notably, although not exclusively, in macrophages of the spocytaneous AKR thymoma. Further studies on the uptake of 67Ga by macrophages are needed to determine whether there are factors related to malignancy that might alter the localization of 67Ga in these cells and thus provide clues to discovering the mechanism of 67Ga localization in tumor tissue.


2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


2019 ◽  
Vol 19 (3) ◽  
pp. 172-196 ◽  
Author(s):  
Ling-Yan Zhou ◽  
Zhou Qin ◽  
Yang-Hui Zhu ◽  
Zhi-Yao He ◽  
Ting Xu

Long-term research on various types of RNAs has led to further understanding of diverse mechanisms, which eventually resulted in the rapid development of RNA-based therapeutics as powerful tools in clinical disease treatment. Some of the developing RNA drugs obey the antisense mechanisms including antisense oligonucleotides, small interfering RNAs, microRNAs, small activating RNAs, and ribozymes. These types of RNAs could be utilized to inhibit/activate gene expression or change splicing to provide functional proteins. In the meantime, some others based on different mechanisms like modified messenger RNAs could replace the dysfunctional endogenous genes to manage some genetic diseases, and aptamers with special three-dimensional structures could bind to specific targets in a high-affinity manner. In addition, the recent most popular CRISPR-Cas technology, consisting of a crucial single guide RNA, could edit DNA directly to generate therapeutic effects. The desired results from recent clinical trials indicated the great potential of RNA-based drugs in the treatment of various diseases, but further studies on improving delivery materials and RNA modifications are required for the novel RNA-based drugs to translate to the clinic. This review focused on the advances and clinical studies of current RNA-based therapeutics, analyzed their challenges and prospects.


BMJ Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. e041463
Author(s):  
Anita Mansouri ◽  
Naomi McGregor ◽  
Rachel Dunn ◽  
Sam Dobbie ◽  
Jane Holmes ◽  
...  

IntroductionPatients relapsing within 12 months of platinum-based chemotherapy usually have a poorer response to subsequent treatments. To date, extensive research into the mechanism of resistance to platinum agents in the treatment of ovarian cancer has not resulted in improved responses or longer survival. Further experimental work and clinical trials with novel agents are therefore justified to address this unmet need.Patients with ovarian, fallopian tube or primary peritoneal cancer that has relapsed within 12 months of platinum-based chemotherapy will be randomised with stratification for BReast CAncer gene (BRCA) status, prior poly (ADP-ribose) polymerase (PARP) exposure and prior antiangiogenic therapy into weekly paclitaxel (chemotherapy), olaparib or the combination of cediranib and olaparib. They will be followed until disease progression or unacceptable toxicity develops. Our trial design permits two investigations. We will compare the efficacy and tolerability of single-agent olaparib with weekly paclitaxel. We will also compare the efficacy and tolerability of olaparib with the combination of olaparib and cediranib. The required sample size of 138 participants (46 per arm) was calculated using a 20% one-sided type I error, 80% power and 15% dropout rate. Recruitment will last 34 months with a follow-up of 18 months.Methods and analysisEthics and disseminationThis study will be conducted under a UK Medicines and Healthcare Products Regulatory Agency Clinical Trials Authorisation. Approval to conduct the study was obtained from the responsible authority before beginning the study. The sponsor will retain ownership of all data arising from the trial. We aim to publish this research in a specialist peer-reviewed scientific journal on study completion. EudraCT number: 2016-000559-28, ethics reference number: 16/LO/2150.Trial registration numberISRCTN: ISRCTN14784018, clinicaltrials.gov: NCT03117933; Pre-results.


2012 ◽  
Vol 21 (9) ◽  
pp. 2021-2032 ◽  
Author(s):  
Silvia Claros ◽  
Noela Rodríguez-Losada ◽  
Encarnación Cruz ◽  
Enrique Guerado ◽  
José Becerra ◽  
...  

2011 ◽  
Vol 29 (2) ◽  
pp. 166-173 ◽  
Author(s):  
Bhuvanesh Dave ◽  
Ilenia Migliaccio ◽  
M. Carolina Gutierrez ◽  
Meng-Fen Wu ◽  
Gary C. Chamness ◽  
...  

Purpose Phosphatase and tensin homolog (PTEN) loss or activating mutations of phosphoinositol-3 (PI3) kinase (PIK3CA) may be associated with trastuzumab resistance. Trastuzumab, the humanized human epidermal growth factor receptor 2 (HER2) monoclonal antibody, and lapatinib, an epidermal growth factor receptor/HER2 tyrosine kinase inhibitor, are both established treatments for HER2-overexpressing breast cancers. Understanding of the cellular response to HER2-targeted therapies is needed to tailor treatments and to identify patients less likely to benefit. Methods We evaluated the effect of trastuzumab or lapatinib in three HER2-overexpressing cell lines. We confirmed the in vitro observations in two neoadjuvant clinical trials in patients with HER2 overexpression; 35 patients received trastuzumab as a single agent for the first 3 weeks, then docetaxel every 3 weeks for 12 weeks (trastuzumab regimen), whereas 49 patients received lapatinib as a single agent for 6 weeks, followed by trastuzumab/docetaxel for 12 weeks before primary surgery (lapatinib regimen). Apoptosis, Ki67, p-MAPK, p-AKT, and PTEN were assessed by immunohistochemistry. Genomic DNA was sequenced for PIK3CA mutations. Results Under low PTEN conditions, in vitro data indicate that lapatinib alone and in combination with trastuzumab was effective in decreasing p-MAPK and p-AKT levels, whereas trastuzumab was ineffective. In the clinical trials, we confirmed that low PTEN or activating mutation in PIK3CA conferred resistance to the trastuzumab regimen (P = .015), whereas low PTEN tumors were associated with a high pathologic complete response rate (P = .007). Conclusion Activation of PI3 kinase pathway is associated with trastuzumab resistance, whereas low PTEN predicted for response to lapatinib. These observations support clinical trials with the combination of both agents.


Sign in / Sign up

Export Citation Format

Share Document