scholarly journals The Effect of Achilles Tendon Loading on Ankle Joint Contact Area and Peak Pressure

2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0030
Author(s):  
L. Daniel Latt ◽  
Alfonso Ayala ◽  
Samuel Kim ◽  
Jesus Lopez

Category: Ankle Introduction/Purpose: Increased tibiotalar peak pressure (PP) and decreased contact area (CA) following ankle fracture are associated with the development of post-traumatic osteoarthtritis. Lateral talar translation of just 1 mm has been shown to decrease CA by 42%. The impact of talar malalignment in other directions on ankle joint contact pressures (AJCP) are not well understood. The majority of research on AJCP has utilized cadaveric models in which body weight is simulated with an axial load applied through the tibia. This model does not account for Achilles tendon - which transmits the largest tendon force in the body during weight bearing. This study aimed to determine the effects of Achilles tendon loading on tibiotalar CA and PP in an axially loaded cadaver model at different ankle flexion angles. Methods: Ten fresh frozen cadaveric lower extremity specimens transected mid-tibia were dissected free of soft tissues surrounding the ankle, sparing the ligaments. The proximal tibia and fibula were potted in quick drying cement for rigid mounting on a MTS machine. A pressure sensing element (TekScan KScan model 5033) was inserted into the tibiotalar joint and used to measure CA (cm2) and PP (MPa). An axial load of 686 N was applied through the tibia and fibula, followed by a 350 N load via the Achilles tendon to simulate mid-stance conditions. Measurements were taken at neutral position, 15 degrees of dorsiflexion and 15 degrees of plantarflexion, with and without Achilles load. The effects of Achilles load and ankle flexion angle on CA and PP were analyzed using a 2x3 ANOVA. Bonferroni post-hoc adjustments were used for multiple comparisons. Level of statistical significance was set at p < 0.05. Results: ANOVA revealed significant main effects of ankle flexion on contact area and peak pressures (Table 1). Contact area was significantly lower for 15 degrees of plantarflexion than neutral and 15 degrees of dorsiflexion (p < 0.001). In addition, peak pressure was significantly higher for 15 degrees of plantarflexion than neutral and 15 degrees of dorsiflexion. ANOVA also indicated that contact area and peak pressure were significantly higher with Achilles load than without (p < 0.001). No interaction effects were found. Conclusion: The applied Achilles tendon load significantly altered tibiotalar PP in an axially loaded cadaver model. On the other hand, changes in CA with Achilles load were found to be minimal (~1.8%). We also found that the greatest PP and smallest CA occured during plantar flexion. This observation can be explained by a difference in width between the anterior and posterior talus. While the results of this study demonstrate the importance of Achilles tendon load on tibiotalar measurements, further studies investigating the effects of additional factors such as loading techniques are warranted to improve the physiological accuracy of cadaver models.

2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0025
Author(s):  
Zhao Hong-Mou

Category: Ankle; Basic Sciences/Biologics Introduction/Purpose: To study the effect of different degrees of distal tibial varus and valgus deformities on the tibiotalar joint contact, and to understand the role of fibular osteotomy. Methods: Eight cadaveric lower legs were used for biomechanical study. Nine conditions were included: normal ankle joint (group A), 10° varus (group B), 5° varus (group C), 5° valgus (group D), 10° valgus (group E) with fibular preserved, and 10° varus (group F), 5° varus (group G), 5° valgus (group H), and 10° valgus (group I) after fibular osteotomy. The joint contact area, contact pressure, and peak pressure were tested; and the translation of contact force center was observed. Results: The joint contact area, contact pressure, and peak pressure had no significant difference between group A and groups B to E (P>0.05). After fibular osteotomy, the contact area decreased significantly in groups F and I when compared with group A (P<0.05); the contact pressure increased significantly in groups F, H, and I when compared with group A (P<0.05); the peak pressure increased significantly in groups F and I when compared with group A (P<0.05). There were two main anterior-lateral and anterior-medial contact centers in normal tibiotalar joint, respectively; and the force center was in anterior-lateral part, just near the center of tibiotalar joint. While the fibula was preserved, the force center transferred laterally with increased varus angles; and the force center transferred medially with increased valgus angles. However, the force center transferred oppositely to the medial part with increased varus angles, and laterally with increased valgus angles after fibular osteotomy. Conclusion: Fibular osteotomy facilitates the tibiotalar contact pressure translation, and is helpful for ankle joint realignment in suitable cases.


2020 ◽  
pp. 193864002095018
Author(s):  
Andreas C. Fösel ◽  
Angela Seidel ◽  
Marc C. Attinger ◽  
Ivan Zderic ◽  
Boyko Gueorguiev ◽  
...  

Background Previous biomechanical studies simulating supination–external rotation (SER) IV injuries revealed different alterations in contact area and peak pressure. We investigated joint reaction forces and radiographic parameters in an unrestrained, more physiological setup. Methods Twelve lower leg specimens were destabilized stepwise by osteotomy of the fibula (SER II) and transection of the superficial (SER IVa) and the deep deltoid ligament (SER IVb) according to the Lauge-Hansen classification. Sensors in the ankle joint recorded tibio-talar pressure changes with axial loading at 700 N in neutral position, 10° of dorsiflexion, and 20° of plantarflexion. Radiographs were taken for each step. Results Three of 12 specimen collapsed during SER IVb. In the neutral position, the peak pressure and contact area changed insignificantly from 2.6 ± 0.5 mPa (baseline) to 3.0 ± 1.4 mPa (SER IVb) ( P = .35) and from 810 ± 42 mm2 to 735 ± 27 mm2 ( P = .08), respectively. The corresponding medial clear space (MCS) increased significantly from 2.5 ± 0.4 mm (baseline) to 3.9 ± 1.1 mm (SER IVb) ( P = .028). The position of the ankle joint had a decisive effect on contact area ( P = .00), center of force ( P = .00) and MCS ( P = .01). Conclusion Simulated SER IVb injuries demonstrated radiological, but no biomechanical changes. This should be considered for surgical decision making based on MCS width on weightbearing radiographs. Levels of Evidence: Not applicable. Biomechanical study


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0030
Author(s):  
Fabian Krause ◽  
Ivan Zderic ◽  
Angela Seidel ◽  
Boyko Gueorguiev ◽  
Marc C. Attinger ◽  
...  

Category: Ankle; Basic Sciences/Biologics; Trauma Introduction/Purpose: In isolated lateral malleolar fractures of the supination-external rotation (SER) type and competent medial stabilizers (type II and III), non-operative treatment has yielded excellent outcome. With complete rupture of the deltoid ligament (SER type IV) fracture instability increases substantially. The rationale for operative treatment of SER type IV fractures is based upon good clinical results and previous biomechanical studies. A significant reduction of the ankle contact area that however is caused by an artificially forced lateralization of the talus in the ankle mortise has been demonstrated. Presumed resultant elevated joint contact stresses are thought to lead to ankle arthritis in the longterm. Methods: In 12 lower leg specimen SER type injuries were simulated by gradual bony and ligamentous destabilization of the ankle from lateral to medial according to the mechanism of injury as described by Lauge and Hansen. High-resolution pressure sensors placed in the ankle joint recorded tibio-talar pressure changes at physiologic weightbearing (700N) in three positions (plantigrade, 10° dorsiflexion and 20° plantarflexion). Results: With increasing instability changes of the ankle kinematics were seen in SER II and III fractures with the same trend also in SER IV lesions. In the plantigrade position, the medial clear space (MCS) increased significantly from an average of 2.5+-0.4mm (no fracture) to 3.9+-1.1mm (SER type IV fracture). However, the corresponding peak pressure increased only slightly from 2.6+- 0.5 mPa to 3.0+-1.4 mPa on average, and the contact area decreased slightly from 810+-42 mm2 to 735+-27mm2 on average representing a non-significant reduction of only 9% of the contact area (p=0.08) after the deep deltoid ligament was completely dissected.The comparison of the results in plantigrade and plantarflexed position revealed substantial differences for MCS, contact area and center of force. Conclusion: Under physiologic load SER type IV isolated lateral malleolar fracture with completely disrupted deep deltoid ligament led to a significant increase of the MCS, but neither to a significant decrease of the of the joint contact area nor significant increase of peak pressure. Clinical Relevance: The findings of this biomechanical study support the recently reported good clinical results of non-operative treatment of SER type II to IV fractures.


2019 ◽  
Vol 9 (9) ◽  
pp. 1921
Author(s):  
Dongwoo Nam ◽  
Miyeon Kwon ◽  
Juhea Kim ◽  
Bummo Ahn

Harnesses can be used in various applications, such as entertainment, rescue operations, and medical applications. Because users are supported on the harness for a long time, they should feel comfortable wearing the harnesses. However, existing commercial harnesses are uncomfortable to wear and cause continuous serious pain. Therefore, in this study, a new pant-type harness with a fabric air pocket to reduce the applied pressure on the body, especially in the groin, is proposed. Keeping this in mind, we have designed and developed the pant-type harness. In addition, we performed pressure and contact area measurement experiments using the harness developed, pressure sensor, and a human mannequin. Peak and mean pressures and contact areas near the groin and waist were measured in the experiments. From the results, when air is injected in the air pockets, the peak pressure and contact area near the waist increased, and the peak pressure near the groin decreased. This means that the pressure applied on the human mannequin near the groin reduces because of the increased contact area near the waist, which is achieved by multi-layered air pockets. In this study, we proposed the optimal design of a novel pant-type harness that can address the limitations of existing harnesses. The proposed harness can be used for a prolonged time in applications, such as virtual reality entertainment, rescue operations, and rehabilitation.


2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0002
Author(s):  
Kenneth Hunt ◽  
Judas Kelley ◽  
Richard Fuld ◽  
Nicholas Anderson ◽  
Todd Baldini

Category: Ankle Introduction/Purpose: The standard for lateral ligament stabilization is direct repair of the ATFL by open or arthroscopic technique. The implications and necessity of repairing the CFL are not well understood. The purpose of this study was to assess the impact of repairing the ATFL alone compared to repairing both the ATFL and CFL, in a biomechanical cadaver model. We hypothesized that repairing the CFL will substantially augment ankle and subtalar joint stability during weight-bearing ankle inversion compared to ATFL repair alone. Methods: Ten matched pairs of fresh frozen human cadaveric ankles were dissected to expose intact ATFL and CFL. Ankles were mounted to an Instron at 20° plantar flexion and 15° of internal rotation. Each ankle was loaded to body weight and then tested from 0 to 20° of inversion for three cycles; stiffness and torque were recorded, peak pressure and contact area were recorded using a calibrated Tekscan sensor system, and rotational displacement of the talus and calcaneus relative to the ankle mortise was recorded using a three-dimensional motion capture system. Ankles then underwent sectioning of ATFL and CFL and were randomly assigned to ATFL only repair using two arthroscopic Broström all-soft anchors, or combined ATFL and CFL repair. Testing was repeated after repair to 20° of inversion, then load-to-failure (LTF). Results: The predominant mode of failure after repair was at the tissue/suture. There were no instances of anchor pullout. There was an 11.7% increase in stiffness in combined repairs, and only a 1.6% increase in ATFL-only repairs. CFL failed at lower torque and rotation than the ATFL in combined repairs. There were strong correlations between intact stiffness and stiffness after repair (r=.74) and ATFL torque in LTF testing (r=.77), across both groups. There was no significant difference in peak pressure or contact area in the tibiotalar joint between the intact ankle and ATFL or combined repair. Conclusion: We found a greater increase in stiffness following combined ATFL and CFL repair compared to ATFL repair alone. This added stability is due to complimentary contributions of the CFL, not augmented LTF strength of the ATFL. Intact specimen stiffness correlated strongly with stiffness after repair and LTF torque, suggesting that a patient’s inherent tissue laxity or inelasticity is likely a meaningful predictor of strength after repair. Restoring the CFL plays a relevant role in lateral ligament repair, however sufficient time for ligament healing should be allowed before substantial inversion stresses are applied.


2016 ◽  
Vol 157 (48) ◽  
pp. 1919-1925 ◽  
Author(s):  
Eleonóra Leidecker ◽  
Péter Kellermann ◽  
Mónika Galambosné Tiszberger ◽  
Bálint Molics ◽  
Aliz Bohner-Beke ◽  
...  

Introduction: Although the role of body weight on foot health and load has been widely documented in research, the effect of the extra load due to body weight on plantar pressure characteristics is not well known. Aim: The aim of this study was to evaluate the impact of obesity on plantar pressure patterns among the working-age population. Method: 180 participants were involved. Two groups were evaluated according to body mass index categories regarding eight regions of the plantar area, focusing on the following parameters: contact area, maximum pressure and peak pressure. Results: Compared with non-obese subjects, the peak pressure was the highest on the midfoot (p<0.001) and the forefoot (p<0.001). Regarding the maximum force, significant statistical difference was detected on the toes (p<0.001), with a value lower among the obese group. The contact area on the total foot and the midfoot was lower among the non-obese subjects (p<0.001). Conclusions: Loading is greatly increasing on the whole plantar area, especially at the midfoot and the forefoot region. Orv. Hetil., 2016, 157(48), 1919–1925.


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0004
Author(s):  
Peter Lawson ◽  
Pam Kumparatana ◽  
Todd Baldini ◽  
Shanthan Challa ◽  
Daniel Moon ◽  
...  

Category: Ankle, Trauma Introduction/Purpose: Osteochondral lesions of the talus (OLT) are a common injury that can result in pain, disability, and risk ankle degeneration, with poor outcomes when not managed properly. Unconstrained ‘shoulder’ lesions on the medial edge of the talar dome present a particular challenge. The objective of this study was to assess the effect of increasing size of a medial OLT shoulder lesion on ankle joint contact mechanics and to determine a threshold size that would warrant bulk grafting of the defect. Our hypothesis is that larger defects will demonstrate increased pressure applied over a lesser surface area, with peak pressure progressing towards the rim of the defect, resulting in an increased risk for tissue damage and need for treatment. Methods: Nine cadaver ankle joints were dissected without disrupting the medial and lateral stabilizing ligaments. A Tekscan pressure sensor was inserted into the ankle joint. Intact specimens were axially compressed up to 800 N with the foot in neutral and again at 20° inversion, simulating ankle position during inversion injury. The specimens were then tested with progressively larger semicircular osteochondral lesions at diameters of 8, 10, 12, 14, and 16 mm that were centered on the edge of the medial talar dome, followed by a final ovoid lesion of 16x20 mm. After each lesion was created the specimens were retested. Linear mixed models adjusted for donor characteristics and assessed changes in peak pressure (MPa), contact area (mm2), peak pressure location (mm), and distance from peak pressure location to the lateral rim of the defect (mm) by defect size and ankle position. Results: For all defect sizes, mean peak pressures were significantly higher in inversion compared to neutral. Mean peak pressure magnitude progressively increased with defect size in both ankle positions. Donor characteristics did not significantly affect mean peak pressure. Contact area decreased in both positions as defect size increased, but inversion led to significantly lower contact areas than in neutral. In neutral positions, the location of peak pressure moved laterally on the talar dome but also moved closer to the defect rim as the size of the defect increased. The rim-peak pressure distance stabilized for defect sizes of 10 mm and above. In inversion, however, the rim-peak pressure distance remained unchanged at about 8 mm for all defect sizes. Conclusion: As OLT defect sizes increased, we observed an increase in peak pressure, a decrease in contact surface area, and a lateral translation of peak pressure location relative to the defect rim. Distance between location of peak pressure and defect rim decreased with neutral loading until a 10 mm defect but remained consistent in inversion loading. These findings suggest a biomechanical explanation for secondary injuries and treatment failures in larger OLT shoulder lesions due to maladaptive cartilage tissue on the dome of the talus. Larger defects (=10 mm) remain a critical point of interest with predictive clinical value for OLT outcomes.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
E. Linder-Ganz ◽  
J. J. Elsner ◽  
A. Danino ◽  
F. Guilak ◽  
A. Shterling

One of the functions of the meniscus is to distribute contact forces over the articular surfaces by increasing the joint contact areas. It is widely accepted that total/partial loss of the meniscus increases the risk of joint degeneration. A short-term method for evaluating whether degenerative arthritis can be prevented or not would be to determine if the peak pressure and contact area coverage of the tibial plateau (TP) in the knee are restored at the time of implantation. Although several published studies already utilized TP contact pressure measurements as an indicator for biomechanical performance of allograft menisci, there is a paucity of a quantitative method for evaluation of these parameters in situ with a single effective parameter. In the present study, we developed such a method and used it to assess the load distribution ability of various meniscal implant configurations in human cadaveric knees (n=3). Contact pressures under the intact meniscus were measured under compression (1200 N, 0 deg flexion). Next, total meniscectomy was performed and the protocol was repeated with meniscal implants. Resultant pressure maps were evaluated for the peak pressure value, total contact area, and its distribution pattern, all with respect to the natural meniscus output. Two other measures—implant-dislocation and implant-impingement on the ligaments—were also considered. If any of these occurred, the score was zeroed. The total implant score was based on an adjusted calculation of the aforementioned measures, where the natural meniscus score was always 100. Laboratory experiments demonstrated a good correlation between qualitative and quantitative evaluations of the same pressure map outputs, especially in cases where there were contradicting indications between different parameters. Overall, the proposed approach provides a novel, validated method for quantitative assessment of the biomechanical performance of meniscal implants, which can be used in various applications ranging from bench testing of design (geometry and material of an implant) to correct implant sizing.


Author(s):  
Hailey P. Huddleston ◽  
Joey S. Kurtzman ◽  
Kenneth H. Levy ◽  
Katherine M. Connors ◽  
Westley T. Hayes ◽  
...  

Abstract Background The scapholunate interosseous ligament (SLIL) couples the scaphoid and lunate, preventing motion and instability. Prior studies suggest that damage to the SLIL may significantly alter contact pressures of the radiocarpal joint. Questions/Purposes The purpose of this study was to investigate the contact pressure and contact area in the scaphoid and lunate fossae of the radius prior to and after sectioning the SLIL. Methods Ten cadaveric forearms were dissected distal to 1-cm proximal to the radiocarpal joint and a Tekscan sensor was placed in the radiocarpal joint. The potted specimen was mounted and an axial load of 200 N was applied over 60 seconds. Results Sectioning of the SLIL did neither significantly alter mean contact pressure at the lunate fossa (p = 0.842) nor scaphoid fossa (p = 0.760). Peak pressures were similar between both states at the lunate and scaphoid fossae (p = 0.301–0.959). Contact areas were similar at the lunate fossa (p = 0.508) but trended toward an increase in the SLIL sectioned state in the scaphoid fossa (p = 0.055). No significant differences in the distribution of contact pressure (p = 0.799), peak pressure (p = 0.445), and contact area (p = 0.203) between the scaphoid and lunate fossae after sectioning were observed. Conclusion Complete sectioning of the SLIL in isolation may not be sufficient to alter the contact pressures of the wrist. Clinical Relevance Injury to the secondary stabilizers of the SL joint, in addition to complete sectioning of the SLIL, may be needed to induce altered biomechanics and ultimately degenerative changes of the radiocarpal joint.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tian-Tian Chang ◽  
Zhe Li ◽  
Xue-Qiang Wang ◽  
Zhi-Jie Zhang

Muscle and tendon stiffness are related to sports performance, tendinopathy, and tendon degeneration. However, the effects of habitual loading on muscle and tendon mechanical properties are unclear. Using amateur basketball players as examples, we investigated the effects of mechanical loading on the stiffness of the gastrocnemius–Achilles tendon (AT) complex in non-dominant and dominant lower limbs. Then, we evaluated the correlation between gastrocnemius and AT stiffness. Forty participants (20 amateur basketball players; 20 normal non-athletic persons) were recruited for this study. Stiffness of the gastrocnemius–AT complex was assessed using MyotonPRO at neutral position and 10° dorsiflexion of the ankle joint in participants from amateur basketball players and the non-athletic general population. Our results showed a greater stiffness of the gastrocnemius–AT complex in amateur basketball players than that in healthy non-athletic subjects at neutral position and 10° dorsiflexion of the ankle joint (P &lt; 0.05). No significant difference in stiffness was found between the non-dominant and dominant lower limbs either in amateur basketball players or in generally healthy subjects (P &gt; 0.05). A significant positive correlation was obtained between stiffness of the AT and medial gastrocnemius (MG) in amateur basketball players (neutral position: r = 0.726 and P = 0.001; dorsiflexion 10°: r = 0.687 and P = 0.001). The amateur basketball players exhibit significantly higher stiffness value in Achilles and gastrocnemius. This is possibly caused by repeated training effects. The symmetric stiffness of the AT and gastrocnemius exists both in amateur basketball players and generally healthy subjects. A significant correlation between the AT and the MG was found in amateur basketball players.


Sign in / Sign up

Export Citation Format

Share Document