scholarly journals Epigenetic Classifiers for Precision Diagnosis of Brain Tumors

2019 ◽  
Vol 12 ◽  
pp. 251686571984028 ◽  
Author(s):  
Javier IJ Orozco ◽  
Ayla O Manughian-Peter ◽  
Matthew P Salomon ◽  
Diego M Marzese

DNA methylation profiling has proven to be a powerful analytical tool, which can accurately identify the tissue of origin of a wide range of benign and malignant neoplasms. Using microarray-based profiling and supervised machine learning algorithms, we and other groups have recently unraveled DNA methylation signatures capable of aiding the histomolecular diagnosis of different tumor types. We have explored the methylomes of metastatic brain tumors from patients with lung cancer, breast cancer, and cutaneous melanoma and primary brain neoplasms to build epigenetic classifiers. Our brain metastasis methylation (BrainMETH) classifier has the ability to determine the type of brain tumor, the origin of the metastases, and the clinical-therapeutic subtype for patients with breast cancer brain metastases. To facilitate the translation of these epigenetic classifiers into clinical practice, we selected and validated the most informative genomic regions utilizing quantitative methylation-specific polymerase chain reaction (qMSP). We believe that the refinement, expansion, integration, and clinical validation of BrainMETH and other recently developed epigenetic classifiers will significantly contribute to the development of more comprehensive and accurate systems for the personalized management of patients with brain metastases.

2018 ◽  
Author(s):  
Javier I. J. Orozco ◽  
Theo A. Knijnenburg ◽  
Ayla O. Manughian-Peter ◽  
Matthew P. Salomon ◽  
Garni Barkhoudarian ◽  
...  

AbstractOptimal treatment of brain metastases is often hindered by limitations in diagnostic capabilities. To meet these challenges, we generated genome-scale DNA methylomes of the three most frequent types of brain metastases: melanoma, breast, and lung cancers (n=96). Using supervised machine learning and integration of multiple DNA methylomes from normal, primary, and metastatic tumor specimens (n=1,860), we unraveled epigenetic signatures specific to each type of metastatic brain tumor and constructed a three-step DNA methylation-based classifier (BrainMETH) that categorizes brain metastases according to the tissue of origin and therapeutically-relevant subtypes. BrainMETH predictions were supported by routine histopathologic evaluation. We further characterized and validated the most predictive genomic regions in a large cohort of brain tumors (n=165) using quantitative methylation-specific PCR. Our study highlights the importance of brain tumor-defining epigenetic alterations, which can be utilized to further develop DNA methylation profiling as a critical tool in the histomolecular stratification of patients with brain metastases.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
James J. Cody ◽  
Pietro Scaturro ◽  
Alan B. Cantor ◽  
G. Yancey Gillespie ◽  
Jacqueline N. Parker ◽  
...  

The metastasis of breast cancer to the brain and central nervous system (CNS) is a problem of increasing importance. As improving treatments continue to extend patient survival, the incidence of CNS metastases from breast cancer is on the rise. New treatments are needed, as current treatments are limited by deleterious side effects and are generally palliative. We have previously described an oncolytic herpes simplex virus (HSV), designated M002, which lacks both copies of theγ134.5 neurovirulence gene and carries a murine interleukin 12 (IL-12) expression cassette, and have validated its antitumor efficacy in a variety of preclinical models of primary brain tumors. However, M002 has not been yet evaluated for use against metastatic brain tumors. Here, we demonstrate the following: both human breast cancer and murine mammary carcinoma cells support viral replication and IL-12 expression from M002; M002 replicates in and destroys breast cancer cells from a variety of histological subtypes, including “triple-negative” and HER2 overexpressing; M002 improves survival in an immunocompetent model more effectively than does a non-cytokine control virus. Thus, we conclude from this proof-of-principle study that aγ134.5-deleted IL-12 expressing oncolytic HSV may be a potential new therapy for breast cancer brain metastases.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3143
Author(s):  
Sergey E. Parfenyev ◽  
Sergey V. Shabelnikov ◽  
Danila Y. Pozdnyakov ◽  
Olga O. Gnedina ◽  
Leonid S. Adonin ◽  
...  

Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1–CTBP2 interaction.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1701
Author(s):  
Theodor Panagiotakopoulos ◽  
Sotiris Kotsiantis ◽  
Georgios Kostopoulos ◽  
Omiros Iatrellis ◽  
Achilles Kameas

Over recent years, massive open online courses (MOOCs) have gained increasing popularity in the field of online education. Students with different needs and learning specificities are able to attend a wide range of specialized online courses offered by universities and educational institutions. As a result, large amounts of data regarding students’ demographic characteristics, activity patterns, and learning performances are generated and stored in institutional repositories on a daily basis. Unfortunately, a key issue in MOOCs is low completion rates, which directly affect student success. Therefore, it is of utmost importance for educational institutions and faculty members to find more effective practices and reduce non-completer ratios. In this context, the main purpose of the present study is to employ a plethora of state-of-the-art supervised machine learning algorithms for predicting student dropout in a MOOC for smart city professionals at an early stage. The experimental results show that accuracy exceeds 96% based on data collected during the first week of the course, thus enabling effective intervention strategies and support actions.


2019 ◽  
Vol 144 (3) ◽  
pp. 583-589 ◽  
Author(s):  
Nicholas B. Figura ◽  
Thrisha K. Potluri ◽  
Homan Mohammadi ◽  
Daniel E. Oliver ◽  
John A. Arrington ◽  
...  

2016 ◽  
Vol 36 (4) ◽  
pp. 133-141 ◽  
Author(s):  
Jennifer A. Crozier ◽  
Lauren F. Cornell ◽  
Bhupendra Rawal ◽  
Edith A. Perez

2021 ◽  
Vol 22 (10) ◽  
pp. 5214
Author(s):  
Inês Figueira ◽  
Joana Godinho-Pereira ◽  
Sofia Galego ◽  
Joana Maia ◽  
János Haskó ◽  
...  

Triple negative breast cancer presents higher mortality and poorer survival rates than other breast cancer (BC) types, due to the proneness to brain metastases formation, which are usually diagnosed at advanced stages. Therefore, the discovery of BC brain metastases (BCBM) biomarkers appears pivotal for a timely intervention. With this work, we aimed to disclose microRNAs (miRNAs) and extracellular vesicles (EVs) in the circulation as biomarkers of BCBM formation. Using a BCBM animal model, we analyzed EVs in plasma by nanoparticle tracking analysis and ascertained their blood-brain barrier (BBB) origin by flow cytometry. We further evaluated circulating miRNAs by RT-qPCR and their brain expression by in situ hybridization. In parallel, a cellular model of BCBM formation, combining triple negative BC cells and BBB endothelial cells, was used to differentiate the origin of biomarkers. Established metastases were associated with an increased content of circulating EVs, particularly of BBB origin. Interestingly, deregulated miRNAs in the circulation were observed prior to BCBM detection, and their brain origin was suggested by matching alterations in brain parenchyma. In vitro studies indicated that miR-194-5p and miR-205-5p are expressed and released by BC cells, endothelial cells and during their interaction. These results highlight miRNAs and EVs as biomarkers of BCBM in early and advanced stages, respectively.


2019 ◽  
pp. 267-279
Author(s):  
Rupert Bartsch ◽  
Elisabeth Sophie Bergen ◽  
Karin Dieckmann ◽  
Anna Sophie Berghoff ◽  
Matthias Preusser

Sign in / Sign up

Export Citation Format

Share Document