scholarly journals Tracing Central Pathways with the Autoradiographic Method,

1981 ◽  
Vol 29 (1A_suppl) ◽  
pp. 117-124 ◽  
Author(s):  
L.W. Swanson

The major advantages and disadvantages of the autoradiographic method for tracing pathways in the central nervous system have become clear in the decade since its introduction. Attention is focused here on two major problems associated with the interpretation of autoradiographic experiments. First, it is often difficult to determine the effective size of an injection site, which may be different for different projections in the same experiment. Quantitative evidence presented here also shows that the apparent size of injection sites in the hippocampus decreases considerably in diameter 1 to 2 weeks after the injections are made. And second, the morphology of labeled pathways must be inferred from a pattern of silver grains lying over the tissue section. Several examples are used to illustrate the point that the autoradiographic method should be used in conjunction with retrograde transport, immunohistochemical, and electron microscopic techniques to investigate the origin, course, and synaptic relationships of individual pathways in the brain and spinal cord.

1990 ◽  
Vol 38 (12) ◽  
pp. 1913-1917 ◽  
Author(s):  
M Antal ◽  
M Petkó

The transport properties of the lectin Phaseolus vulgaris leucoagglutinin (PHA-L) were tested in the frog central nervous system. After delivery of the lectin to the lower brainstem by iontophoresis, stained axons and axon terminals, as well as neurons with richly arborizing dendrites, were observed indifferent regions of the brain and spinal cord even far away from the site of application. The large number and the Golgi-like appearance of labeled neurons situated rostral and caudal to the site of PHA-L deposit indicate that PHA-L is transported equally in both the anterograde and the retrograde direction in the central nervous system of the frog. This is in contrast with the mammalian nervous system, in which PHA-L is transported predominantly in the anterograde direction and the retrograde transport is poor.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Song Cao ◽  
Daniel W. Fisher ◽  
Guadalupe Rodriguez ◽  
Tian Yu ◽  
Hongxin Dong

Abstract Background The role of microglia in Alzheimer’s disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. Methods In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. Results Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. Conclusion These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.


2021 ◽  
pp. 109980042110500
Author(s):  
Pamela Newland ◽  
Yelyzaveta Basan ◽  
Ling Chen ◽  
Gregory Wu

Multiple sclerosis (MS), an inflammatory neurodegenerative disease of the central nervous system (CNS), afflicts over one per thousand people in the United States. The pathology of MS typically involves lesions in several regions, including the brain and spinal cord. The manifestation of MS is variable and carries great potential to negatively impact quality of life (QOL). Evidence that inflammatory markers are related to depression in MS is accumulating. However, there are barriers in precisely identifying the biological mechanisms underlying depression and inflammation. Analysis of cytokines provides one promising approach for understanding the mechanisms that may contribute to MS symptoms. Methods: In this pilot study, we measured salivary levels of interleukin (IL)-6, IL-1beta (β), and IL-10 in 24 veterans with MS. Descriptive statistics were reported and Pearson correlation coefficients were obtained between cytokines and depression. Results: The anti-inflammatory cytokine IL-10 was significantly negatively associated with depression in veterans with MS (r = −0.47, p = .024). Conclusion: Cytokines may be useful for elucidating biological mechanisms associated with the depression and a measure for nurses caring for veterans with MS.


Author(s):  
Robert Laureno

This chapter on “Imaging” examines the relative advantages and disadvantages of computed tomography (CT) and magnetic resonance imaging (MRI) scans. It compares the modalities to each other and to gross neuropathology. For several decades, neurologists have been able to view cross-sectional images of living patients. Analogous to gross neuropathology, cross-sectional imaging displays the brain as an entire organ but does not demonstrate microscopic tissue or cellular pathology. By allowing practitioners to view sections of brain and spinal cord in vivo, imaging has improved neurologic practice and facilitated clinical research. This chapter deals with imaging topics that are important to the neurologist. The timing of scans, the effects of gravity, and the importance of plane of section are considered. Imaging is compared to gross neuropathology, and MRI is compared to CT.


1930 ◽  
Vol 51 (6) ◽  
pp. 889-902 ◽  
Author(s):  
Jules Freund

1. Antibodies can be extracted from the brain and spinal cord of rabbits actively or passively immunized with typhoid bacilli. 2. The titers of the antibodies in the extracts of brain and cord depend upon the titer of the blood serum. In actively immunized rabbits the following numerical relationships exist between the titers of the serum and of these organ extracts: The ratio of the titer of the serum is to the titers of extract of brain and of the spinal cord about as 100 is to 0.8; the titer of the serum is to the titer of the cerebrospinal fluid as 100 is to 0.3. In passively immunized rabbits the titer of the serum is to the titer of brain and spinal-cord extract as 100 is to 0.7. 3. The antibodies recovered from the brain are not due to the presence of blood in it for perfusion of the brain does not reduce its antibody content appreciably. 4. Antibodies penetrate into the spinal fluid from the blood even in the absence of inflammation of the meninges. When the penetration is completed the following numerical relationship exists between the titer of the serum and that of the cerebrospinal fluid: 100 to 0.25. 5. The penetration into the cerebrospinal fluid of antibodies injected intravenously proceeds at a slow rate, being completed only several hours after the immune serum has been injected. The penetration of antibodies into the tissue of the brain occurs at a very rapid rate. It is completed within 15 minutes. 6. It is very unlikely that when the immune serum is injected intravenously the antibodies reach the brain tissue by way of the cerebrospinal fluid, for (1) the antibody titer of the cerebrospinal fluid is lower than that of the brain extract, and (2) antibodies penetrate faster into the tissue of the brain than into the cerebrospinal fluid.


2015 ◽  
Vol 23 (3) ◽  
pp. 290-293 ◽  
Author(s):  
Ian Peeters ◽  
Jan W. Casselman ◽  
Stefaan J. Vandecasteele ◽  
Alexander Janssen ◽  
Bart Regaert ◽  
...  

Nocardiosis of the central nervous system is a challenging and difficult diagnosis for the clinician. The combination of infections of the brain and spinal cord is even more rare. The authors report on a patient with multiple lesions in the brainstem and cervical spinal cord. This 81-year-old immunocompetent woman presented with symptoms of progressive walking difficulty and ataxia. The results of an extensive workup with laboratory investigation, MRI, lumbar puncture, positron emission tomography (PET), and bone marrow biopsy remained inconclusive. Only after an open biopsy of a cervical lesion by an anterior approach through a partial central corpectomy of the cervical spine, was the diagnosis of nocardiosis made, allowing for specific antibiotic treatment.


1908 ◽  
Vol 54 (225) ◽  
pp. 146-148
Author(s):  
William W. Ireland

Rothmann points out how important it is to surgeons that the localisation of lesions in the brain and spinal cord should be made with the utmost accuracy. In many cases diseases do not strike suddenly upon a nervous system previously intact. Often the circulation has been previously deranged by arterial sclerosis, which prepares the way for transitory hemiplegia or aphasia. Sometimes there is loss of function after central lesions, which disappears in longer or shorter time. Goltz and his followers have treated many effects following the extirpation of the whole or part of the cerebrum as due to what they call inhibition (Hemmung). Thus the functions of the spinal cord are much impaired after removal of the cerebral ganglia, or the lower portion of the cord loses its reflex function after section higher up, but after a while it again resumes its act$ibon.


2021 ◽  
pp. 243-252
Author(s):  
Andrew Hart

The functioning nervous system is an integrated system including conscious and subconscious pathways in the brain and spinal cord, the peripheral nerves, and specialized target organs. Efferent and afferent feedback pathways integrate at multiple levels, and there is interplay with mood, life function, growth, and development. The peripheral nervous system provides homeostatic and pain functions, and links the virtual world of our consciousness to the physical body that senses and manipulates the world around us. Injury disconnects the central nervous system from physical reality and induces profound, time-dependent changes at all levels of the system that mostly impede functional restitution after nerve reconstruction. For surgery to optimize outcomes it must be timely, and applied with precision, neurobiological awareness, and aided by adjuvant therapies or technologies that modulate responses within the central nervous system, primary motor and sensory neurons, repair site, distal nerve stump, and target organs.


2012 ◽  
Vol 24 (5) ◽  
pp. 994-999 ◽  
Author(s):  
Santiago S. Diab ◽  
Francisco A. Uzal ◽  
Federico Giannitti ◽  
H.L. Shivaprasad

An outbreak of cerebrospinal nematodiasis due to Baylisascaris sp. was documented in an urban outdoor aviary in southern California. Thirty-four out of 35 cockatiels ( Nymphicus hollandicus, 97%) showed a variety of neurological signs including ataxia, lateral recumbency, opisthotonus, and torticollis. Thirteen carcasses were submitted for necropsy; the histological lesions were restricted to the central nervous system (brain and spinal cord) and were predominantly degenerative, characterized by multifocal white matter vacuolation, gliosis, axonal swelling, gitter cell infiltration, and mild hemorrhage, rarely accompanied by mild granulomatous inflammation and mild lymphocytic perivascular cuffs. Nematode larvae morphologically compatible with Baylisascaris sp. were observed in the brain of 5 birds, away from the lesion site.


2020 ◽  
pp. 5785-5802
Author(s):  
Christian Krarup

This chapter looks at electrophysiological studies of the central nervous system and peripheral nervous system—the core investigations in clinical neurophysiology. These include electroencephalography, which is of value to diagnose epilepsy caused by focal or diffuse brain diseases, electromyography and nerve conduction studies, which are of value to diagnose diseases in nerves and muscles, and evoked potentials, which are of value to diagnose diseases of white matter in the brain and spinal cord.


Sign in / Sign up

Export Citation Format

Share Document