X-ray diffraction and TEM analysis of Fe–Al alloy layer in coating of new hot dip aluminised steel

2003 ◽  
Vol 19 (5) ◽  
pp. 657-660 ◽  
Author(s):  
Y.-J. Li ◽  
J. Wang ◽  
X. Holly
2007 ◽  
Vol 40 (4) ◽  
pp. 675-683 ◽  
Author(s):  
Cristy L. Azanza Ricardo ◽  
Mirco D'Incau ◽  
Paolo Scardi

A new procedure is proposed to determine sub-surface residual stress gradients by laboratory X-ray diffraction measurements at different depths using a chemical layer-removal technique. The standard correction algorithm for stress relaxation due to layer removal is improved by including corrections for X-ray absorption, and by the addition of constraints imposed by the mechanical equilibrium conditions. Besides correcting the data,i.e.providing more reliable through-thickness residual stress trends, the proposed procedure also provides an elastically compatible and plausible estimate of the residual stress inside the component, well beyond the measured region. The application of the model is illustrated for a set of Al-alloy components shot-peened at different Almen intensities. Results are compared with those given by `blind hole drilling', which is an independent and partly destructive method.


2013 ◽  
Vol 12 (01) ◽  
pp. 1350006
Author(s):  
AHMED E. HANNORA ◽  
FARIED F. HANNA ◽  
LOTFY K. MAREI

Mechanical alloying (MA) method has been used to produce nanocrystallite Mn -15at.% Al alloy. X-ray diffraction (XRD) patterns for the as-milled elemental α- Mn and aluminum powder samples show a mixture of α + β- MnAl phases after 20 h of milling and changes to a dominant β- MnAl phase structure after 50 h. An average crystallite size of 40 nm was determined from Hall–Williamson method analysis after 5 h of milling. Moreover, the thermal analysis results using differential thermal analysis (DTA), suggested a possible phase transformation after 20 h of milling. Isothermal treatments are carried in the temperature range of 450°C to 1000°C. Room-temperature vibrating sample magnetometer (VSM) measurements of the hysteretic response revealed that the saturation magnetization Bs and coercivity Hc for 10 h ball milled sample are ~ 2.1 emu/g and ~ 92 Oe, respectively.


Author(s):  
Tarun Goyal ◽  
T. S. Sidhu ◽  
R. S. Walia

This study reveals the successful low pressure cold spray deposition of near-uniform, defect free and dense copper coatings approximately 700-1900 µm thick, on Al alloy for electro-technical applications. The micro structural characteristics of the deposits have been studied using the combined techniques of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) and electron-probe micro analysis (EPMA). The coatings exhibited characteristic splat-like, layered morphologies due to the deposition of solid powder particles which appeared to have been plastically deformed on impact to the substrate. The developed coatings have a dense (in the range of 3090-5015 kg/m3)and nearly uniform microstructure, with almost uniform hardness values in the range of 120 -140 Hv, and electrical conductivity in the range of 23-30 MS/m. EDAX, XRD and EPMA results revealed that the main constituent in the coating is Cu.


1996 ◽  
Vol 441 ◽  
Author(s):  
N. Sukidi ◽  
N. Dietz ◽  
U. Rossow ◽  
K. J. Bachmann

AbstractIn this contribution we report on the real-time monitoring of low temperature growth of epitaxial GaxIn1-xP/GaP heterostructures on Si(100) by pulse chemical beam epitaxy, using tertiary butylphosphine (TBP), triethylgallium (TEG), and trimethylindium (TMI) as source materials. Both step-graded and continuously graded heterostructures have been investigated. The composition of the GaxIn1-xP epilayers has been analyzed by various techniques including X-ray diffraction, Rutherford backscattering, Auger, and Raman spectroscopy. Good correlation has been found between X-ray diffraction, RBS, and Vegard's law compositional analysis. We used Ppolarized Reflectance Spectroscopy (PRS) and Laser Light Scattering (LLS) to monitor the growth rate and surface morphology during growth. The information gained by these techniques has been utilized in the improvement of the surface preconditioning as well as to optimize the initial heteroepitaxial nucleation and overgrowth process. We studied the optical response to the compositional changes in the surface reaction layer (SRL) during the exposure of the surface to either sequential or synchronous pulses of TEG and TMI. The cross sectional TEM analysis indicates that the synchronous exposure results in an abrupt GaxIn1-xP/GaP interface while the sequential exposure does not which may suggest a compositionally graded interlayer formation. For heteroepitaxial GaxIn1-xP films on Si, a buffer layer of GaP is found to be necessary for optimum uniformity of the GaxIn1-xP layer. The selective growth of GaxIn1-xP on Si(001) is accessed.


2011 ◽  
Vol 704-705 ◽  
pp. 1406-1409
Author(s):  
Meng Song ◽  
Yun Li Feng ◽  
Jing Bo Yang

Annealing and dip galvanizing treatments of Galvalume were studied by using methods of Gleeble thermal simulation experiment and optical microscopy (OM), scanning electronic microscopy (SEM), X-ray energy dispersive analysis (EDAX), X-ray diffraction (XRD) and so on. Meanwhile, surface morphology, microstructure, phases and the respective compositions of Al-Zn alloy coating plate were analyzed. The results show that decreased rate and prolonged time of annealing treatment cause less effect on process ability of product, which all because of the short time of annealing process in continuous aluminum-zinc treatment. However, coarse grain which causes low strength, high elongation and r value occurs when rising annealing temperature. To get better coated surface, in-zinc pot temperature should be controlled in the range of 590~610°C, and height of air-knife nozzle should be kept in the range of 150~200mm. Surface layer of 55%Al-Zn alloy coating is covered by Al-Zn alloy, the intermediate alloy layer is consisted of binary and ternary compounds, such as θ phase (FeAl3), Al0.3Fe3Si0.7 and Al3.21Si0.47. Keywords: Galvalume, Process, Microstructure, Properties


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Banzeer Ahsan Abbasi ◽  
Javed Iqbal ◽  
Riaz Ahmad ◽  
Layiq Zia ◽  
Sobia Kanwal ◽  
...  

This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet–visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.


2020 ◽  
Vol 60 (4) ◽  
pp. 475-480
Author(s):  
V. A. N. Righetti ◽  
T. M. B. Campos ◽  
L. B. Robatto ◽  
R. R. Rego ◽  
G. P. Thim

2010 ◽  
Vol 638-642 ◽  
pp. 2464-2469 ◽  
Author(s):  
Cristy Leonor Azanza Ricardo ◽  
G. Degan ◽  
M. Bandini ◽  
Paolo Scardi

The residual stress profile in a shot-peened Al alloy component was studied by a recently proposed method based on the known procedure of progressive thinning and X-ray Diffraction measurements. The effect the cyclic stress on the fatigue life was studied in detail, showing the correlation between nominal load and residual stress relaxation. Besides showing the expected decrease of compressive stress with the load and number of cycles, the present work highlights the importance of changes in the through-the-thickness residual stress distribution.


2011 ◽  
Vol 239-242 ◽  
pp. 773-776
Author(s):  
Li Yang ◽  
Gang Li

In order to improve the wear resistance of mild steel products, the Fe-based alloy layer was melted on the surface of mild steel by high-frequency induction cladding. Using scanning electron microscopy, energy dispersive spectroscopy and x-ray diffraction observation of microstructure of the alloy coating, wear resistance of the coating was evaluated. The results showed that: between the coating and the substrate is metallurgical bonded; The microstructure of coating layer was compact actinomorphous structure with plentiful nubby and strip eutectics; Actinomorphous structure was mixed structure of martensite and γ alloy solid solution covered with a large number floriform and dendrite eutectic; The coating has high hardness and good wear resistance.


2007 ◽  
Vol 336-338 ◽  
pp. 1676-1678
Author(s):  
Cheng Yun Ning ◽  
Ying Jun Wang ◽  
Xiao Feng Chen ◽  
Jian Dong Ye ◽  
Gang Wu ◽  
...  

In the present study, bioactive functional gradient coatings were prepared using net-energy controlled plasma spraying technology. The microstructure and phases of the bioactive functional gradient coating were examined by means of transmission electron microscope, scanning electron microscopy and X-ray diffraction. The results revealed that: (1) as-sprayed coatings contained a large amount of amorphous phases and some nano-sized HA crystals formed during rapid solidification, (2) surface of the coating was very rough with different-sized micropores, and the gradient layer was much denser which firmly bonded to the substrate without gaps and obvious interface between the coating and the substrate


Sign in / Sign up

Export Citation Format

Share Document