Effects of dry grinding on two kaolins of different degrees of crystallinity

Clay Minerals ◽  
1991 ◽  
Vol 26 (4) ◽  
pp. 549-565 ◽  
Author(s):  
F. Gonzalez Garcia ◽  
M. T. Ruiz Abrio ◽  
M. Gonzalez Rodriguez

AbstractGrain-size distribution, specific surface, thermal analysis, electron microscopy and X-ray diffraction were used to study the effect of dry grinding on the structure and properties of two kaolins of different degree of crystallinity. Grinding caused particles to fragment and resulted in the formation of stable large spheroidal aggregates of fine particles. These two processes were not clearly separated by a specific grinding time, but occurred in parallel shortly after grinding was started, although aggregate formation persisted at longer grinding times. The variation in the specific surface area during grinding was found to be dependent on these two processes and on the particle size and crystallinity of the initial kaolin. DTA and XRD data and the amount of water released at different temperatures revealed grinding to gradually destroy the kaolinite structure and cause the loss of hydroxyl ions and the formation of others that were subsequently removed at low and medium temperatures. An explanation for the process whereby the new hydroxyl ions are formed is provided.

1998 ◽  
Vol 13 (8) ◽  
pp. 2218-2223 ◽  
Author(s):  
S. Ardizzone ◽  
C. L. Bianchi ◽  
B. Vercelli

The present paper reports data concerning magnesia samples obtained by calcination of different precursor salts at different increasing temperatures (873–1253 K). The oxides are characterized by x- ray diffraction, scanning electron microscopy, and N2 adsorption at subcritical temperatures. The samples appear to be composed, at any temperature, of pure periclase with a degree of crystallinity which increases with the temperature of calcination. Morphologically, the products have the shape either of lamellas or of cubes of variable dimensions, depending on the nature and route of preparation of the precursor salts. The variation of the specific surface area and the degree of porosity with the nature of the precursors and the temperature is discussed.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Prathap Pathi ◽  
Ozge Tüzün ◽  
Abdelilah Slaoui

AbstractPolycrystalline silicon (pc-Si) thin films have been synthesized by aluminium induced crystallization (AIC) of amorphous silicon (a-Si) at low temperatures (≤500°C) on flexible metallic substrates for the first time. Different diffusion barrier layers were used to prepare stress free pc-Si films as well as to evaluate the effective barrier against substrate impurity diffusion. The layers of aluminum (Al) and then amorphous silicon with the thickness of 0.27 μm and 0.37 μm were deposited on barrier coated metal sheets by means of an electron beam evaporation and PECVD, respectively. The bi-layers were annealed in a tube furnace at different temperatures (400-500°C) under nitrogen flow for different time periods (1-10hours). The degree of crystallinity of the as-grown layers was monitored by micro-Raman and reflectance spectroscopies. Structure, surface morphology and impurity analysis were carried out by X-ray diffraction, scanning electron microscopy (SEM) and EDAX, respectively. The X-ray diffraction measurements were used to determine the orientation of grains. The results show that the AIC films on metal sheets are polycrystalline and the grains oriented in (100) direction preferentially. However, the properties of AIC films are highly sensitive to the surface roughness.


Clay Minerals ◽  
1988 ◽  
Vol 23 (4) ◽  
pp. 399-410 ◽  
Author(s):  
J. L. Pérez-Rodríguez ◽  
L. Madrid Sánchez del Villar ◽  
P.J. Sánchez-Soto

AbstractDry grinding of pyrophyllite (Hillsboro, USA) has been studied by X-ray diffraction (XRD), specific surface area measurements (BET) and scanning electron microscopy (SEM). At the beginning of the grinding process, some effects such as delamination, gliding and folding of the layers, and decrease in particle size were detected by SEM and XRD, resulting in a large increase in specific surface area, up to a maximum of ∼60 m2·g−1. Marked changes in the structure take place between 30 and 32 mins grinding. Longer grinding times increase the degree of disorder and SEM and specific surface area data suggest that aggregation occurs. XRD results indicate that some residual order persists in the degraded structure.


2005 ◽  
Vol 498-499 ◽  
pp. 663-668 ◽  
Author(s):  
P.M. Pimentel ◽  
M.F. Ginani ◽  
Antonio Eduardo Martinelli ◽  
D.M.A. Melo ◽  
A.M. Garrido Pedrosa ◽  
...  

Transition-metal spinels are efficient catalysts in a number of heterogeneous processes, such as CO oxidation, catalytic combustion of hydrocarbons and oxychlorination of methane. The properties of catalytic materials are highly dependent on the synthesis route. Spinels are often produced at high temperatures by the calcination of precursors such as powder mixtures, slurries or resins. Combustion synthesis is a cost-efficient method used to produce homogeneous and fine particles with high reproducibility. Cu0.8Ni0.2Cr2O4 spinel was obtained by the combustion of metallic nitrates using urea as fuel. The resulting powders were calcinated at different temperatures and characterized by thermogravimetric and particle size analyses, X ray diffraction, and scanning electron microscopy. The effect of urea on the control of the process and particle morphology was investigated. The results revealed the formation of porous powders with increasing crystallinity as the calcination temperature increased. Crystallization of spinel started at 700 oC.


2010 ◽  
Vol 178 ◽  
pp. 124-128
Author(s):  
Xu Ming Wang ◽  
Yan Xi Deng ◽  
Yan Feng Li

Wet grinding of diatomite was carried out in a stirred mill. The changes in particle size, specific surface area and structure or the particle shape in the wet grinding process were investigated. The adsorption of methylene blue from aqueous solution by the ground diatomite was also studied. X-ray diffraction (XRD), scanning electron microscopy (SEM) and IR spectra were employed to characterize the ground diatomite. The median particle size decreased and the specific surface area increased with the grinding time, an agglomeration phenomenon was not observed during the experimental grinding time. The X-ray diffraction patterns versus grinding time showed that a peak intensity reduction of opal. The results of adsorption of methylene blue onto diatomite indicated the adsorption capacity increases with the increase of grinding time until eventually reaches a constant value.


2005 ◽  
Vol 38 (6) ◽  
pp. 888-899 ◽  
Author(s):  
Marek Andrzej Kojdecki ◽  
Joaquín Bastida ◽  
Pablo Pardo ◽  
Pedro Amorós

The crystalline microstructure of ground sepiolite has been investigated. A reference sample of sepiolite and products of its comminution by dry grinding were studied through X-ray diffraction pattern analysis, specific surface measurements by nitrogen adsorption and complementary analysis of field emission scanning electron microscope images. A statistical model of polycrystals was applied to describe and determine the crystalline microstructure of the studied specimens. The model parameters characterizing the microstructure were prevalent crystallite shape, volume-weighted crystallite size distribution and second-order crystalline lattice strain distribution, and they were determined for each sample by modelling a selected part of the X-ray diffraction pattern and fitting the simulated pattern to a measured one. A strict correlation of microstructure parameters with grinding time and with specific surface magnitudes was observed. A parallelepiped with edge-length ratios almost independent of grinding time (for longer times) was found to be the predominant crystallite shape. The crystallite size distributions were found to be close to logarithmic normal ones, with the mean values decreasing with increasing grinding time and the standard-deviation-to-mean-value ratios approximately constant. The second-order crystalline lattice strain distributions were found to be close to some simple function with the mean value equal to zero, the mean deviation increasing with increasing grinding time and the standard-to-mean-deviation ratios approximately constant. It was demonstrated that the specific surface can be calculated on the basis of the microstructure characteristics. Some details of the relation between crystallites and crystalline grains were explained by comparing the results of analysesviaX-ray diffraction and scanning electron microscopy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3103
Author(s):  
Laurent Gremillard ◽  
Agnès Mattlet ◽  
Alexandre Mathevon ◽  
Damien Fabrègue ◽  
Bruno Zberg ◽  
...  

Due to growing demand for metal-free dental restorations, dental ceramics, especially dental zirconia, represent an increasing share of the dental implants market. They may offer mechanical performances of the same range as titanium ones. However, their use is still restricted by a lack of confidence in their durability and, in particular, in their ability to resist hydrothermal ageing. In the present study, the ageing kinetics of commercial zirconia dental implants are characterized by X-ray diffraction after accelerated ageing in an autoclave at different temperatures, enabling their extrapolation to body temperature. Measurements of the fracture loads show no effect of hydrothermal ageing even after ageing treatments simulated a 90-year implantation.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


2012 ◽  
Vol 512-515 ◽  
pp. 158-161 ◽  
Author(s):  
Ling Dai ◽  
Qiang Xu ◽  
Shi Zhen Zhu ◽  
Ling Liu

As a new candidate material for the ceramic layer in thermal barrier coatings (TBCs) system, La3NbO7 was synthesized with La2O3 powder and Nb2O5 powder by solid state reaction. The stating powders with a mole ratio of La to Nb of 3:1 were mixed and then the mixture was calcined under the different temperatures(800°C, 1000°C, 1200°C) and dwell times(2h, 6h, 10h). The phase structure of the powder was observed by X–ray diffraction(XRD), and the microstructure of the sample was observed by scanning electron microscope(SEM). The effect of calcination temperature and dwell Time on the phase formation were examined. The results indicate that the La3NbO7 powder with single phase can be synthesized successfully at 1200°C for 10h in air, and the La3NbOsub>7 powders synthesized have an ultra-fine particle size of 0.5˜1µm with a granular particle shape. With the temperature increasing, LaNbO4/sub> was synthesized firstly and then La3NbO7 was synthesized with a mole ratio of La2O3 to LaNbO4 of 1:1.


Sign in / Sign up

Export Citation Format

Share Document