scholarly journals Biology of CNS lymphoma and the potential of novel agents

Hematology ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 556-564 ◽  
Author(s):  
James L. Rubenstein

Abstract Primary and secondary CNS lymphomas are aggressive brain tumors that pose an immense challenge to define in terms of molecular pathogenesis, as well as to effectively treat. During the past 10 years improvements in survival have been achieved with the implementation of anti-CD20 immunotherapy and optimization of dose-intensive consolidation strategies. The applications of whole-exome sequencing, comparative genomic hybridization, transcriptional profiling, and examination of the tumor microenvironment, particularly in the context of clinical investigation, provide insights that create a roadmap for the development and implementation of novel targeted agents for this disease. A body of genetic evidence strongly suggested that primary CNS lymphomas (PCNSLs) are likely largely dependent on NF-κB prosurvival signals, with enrichment of mutations involving the B-cell receptor pathway, in particular myeloid differentiation primary response 88 and cluster of differentiation 79B. The first set of early-phase investigations that target NF-κB in PCNSL have now been completed and support the NF-κB hypothesis but at the same time reveal that much work needs to be done to translate these results into meaningful advances in survival for a large fraction of patients. Insights into secondary prosurvival pathways that mediate drug resistance is a priority for investigation. Similarly, further evaluation of the immune-suppressive mechanisms in the CNS lymphoma tumor microenvironment is requisite for progress. Combinatorial interventions that promote the antitumor immune response have significant potential. With increasing availability of targeted agents, there is also a need to develop more sensitive imaging tools, not only to detect this highly invasive brain neoplasm but also potentially to define an evolving molecular phenotype to facilitate precision medicine.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3219-3219
Author(s):  
Cigall Kadoch ◽  
Valerie Wong ◽  
Lingjing Chen ◽  
Anna Bet-Lachin ◽  
Ritu Roy ◽  
...  

Abstract Abstract 3219 Background: Macrophages are an important component of the tumor microenvironment and the immune response to malignancy. Classically activated (M1-polarized) macrophages exhibit anti-tumor effect, while alternatively activated (M2-polarized) macrophages promote tissue repair, angiogenesis, immunosuppression and tumor progression. To date, the vast majority of studies on macrophage phenotype and polarization have been based upon in vitro studies or murine model systems. We tested the hypothesis that distinct macrophage subsets can be identified within the microenvironment of lymphoid tumors and that the relative proportion of M1:M2 macrophages correlates with therapeutic response and/or resistance. In addition, we postulated that transcriptional analysis of distinct macrophage subpopulations would provide insights into mechanisms by which M2 macrophages promote tumor progression and reveal novel mechanisms which direct the interconversion of activated macrophages between classical and alternative activation states. Our focus has been on the evaluation of the tumor microenvironment in CNS lymphomas, the cerebrospinal fluid (CSF), which is enriched in inflammatory cells including activated CD14+ macrophages that we hypothesized would exhibit phenotypic features consistent with M1 and M2 polarization. Methods: We developed a novel 9-parameter flow-cytometric method to isolate distinct subpopulations of activated macrophages from CSF and peripheral blood. The method identifies macrophages with M1 features based upon expression of nitric oxide synthase (iNOS) and M2 macrophages on the basis of low-expression of iNOS and high expression of scavenger receptors CD206, CD209 and CD36. Subpopulations of macrophages were quantified and analyzed by FACS and transcriptional profiling (Affymetrix Gene Chip 1.0 ST). Serial analysis of CSF was performed in CNS lymphoma patients to correlate macrophage polarization states with response and/or progression. Parallel analyses were performed in blood in patients with non-Hodgkin lymphoma (NHL) to control conditions including infections and/or sarcoid. Results: At least four distinct subpopulations of activated macrophages were identified in CSF in association with CNS lymphoma (N=30) and controls (N=28). A greater than six-fold increase in the proportion of M2 macrophages was detected in CSF of CNS lymphoma patients compared to control subjects (p<0.001). By contrast, the proportion of CSF macrophages with M1 features was similar between NHL and controls. Moreover, peripheral blood macrophages from CNS lymphoma patients did not demonstrate significant M2-polarization. Serial analysis demonstrated that M2 polarization of CSF macrophages correlated with tumor progression and/or response. Transcriptional profiling analysis was conducted on macrophage subpopulations isolated from CSF of CNS lymphoma patients and controls. While few significant transcriptional differences were identified between M1 and unpolarized (Mnaive) macrophages, the transcriptional comparison of M2 vs. M1 as well as M2 vs. Mnaive macrophage subpopulations revealed several hundred differentially expressed genes with significant adjusted p-values. Pathway Analysis (Ingenuity) suggested mechanisms strongly associated with the M2 phenotype including activation of Notch signaling. Transcripts associated with short survival were most strongly expressed by M2 macrophages and included Ephrin A4 and lymphoid chemokines such as CXCL-13. The prognostic significance of high CXCL-13 and Ephrin A4 expression were confirmed by ELISA in an independent validation set of cases. Conclusions: We believe this to be the first application of flow-cytometry to define the phenotypes and dynamic interconversion of intratumoral macrophages within the lymphoma microenvironment and the first correlation of M2 macrophages with the evolution of resistance to therapy. In addition, this dataset provides the first in-depth transcriptional profiling analysis of in vivo human macrophage subpopulations and suggests novel mechanisms by which tumor-associated macrophages may facilitate lymphoma progression via the regulation of the metabolic microenvironment, angiogenesis, tumor invasion and immunosuppression. Based upon our additional preliminary data, we hypothesize that these results may be relevant to a variety of lymphoid tumors. Disclosures: Off Label Use: We will discuss the use of rituximab within the leptomeningeal compartment to treat recurrent/refractory CNS lymphomas.


2011 ◽  
Vol 135 (7) ◽  
pp. 860-869 ◽  
Author(s):  
Soheil S. Dadras

Abstract Context.—In the current “molecular” era, the advent of technology, such as array-based platforms, systems biology, and genome-wide approaches, has made it possible to examine human cancers, including melanoma, for genetic mutations, deletions, amplification, differentially regulated genes, and epigenetic changes. Advancement in current technologies is such that one can now examine ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein directly from the patient's own tumor. Objective.—To apply these new technologies in advancing molecular diagnostics in melanoma has historically suffered from a major obstacle, namely, the scarcity of fresh frozen, morphologically defined tumor banks, annotated with clinical information. Recently, some of the new platforms have advanced to permit utilization of formalin-fixed, paraffin-embedded (FFPE) tumor specimens as starting material. Data Sources.—This article reviews the latest technologies applied to FFPE melanoma sections, narrowing its focus on the utility of transcriptional profiling, especially for melastatin; comparative genomic hybridization; BRAF and NRAS mutational analysis; and micro ribonucleic acid profiling. Conclusion.—New molecular approaches are emerging and are likely to improve the classification of melanocytic neoplasms.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A19.1-A19
Author(s):  
JGM Strijker ◽  
E Drent ◽  
JJF van der Hoek ◽  
R Pscheid ◽  
B Koopmans ◽  
...  

BackgroundCurrently ~50% of patients with the diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which are thought to recognize and kill target cells independent of MHC-I. In this pilot project we have tested the potential efficacy of TEG002 therapy as a novel treatment for neuroblastoma, with tumor organoids.Materials and MethodsEffector cells were created from healthy donor peripheral blood T cells. The TEG002 cells were engineered by transducing αβ-T cells with a defined Vγ9Vδ2-T cell receptor. Both the untransduced αβ-T cells and the endogenous Vγ9Vδ2-T cells from the same healthy donor were used as controls in all experiments. Activation and killing of TEG002 was tested in a co-culture setting with neuroblastoma organoids. Supernatant of the co-culture was collected at 24 hours for IFNγ ELISA to measure activation of TEG002. The dynamics of cytotoxicity were analyzed over time from 0 till 72 hours, using the live-cell imaging system IncuCyte from Sartorius®. Killing was quantified using a Caspase3/7 Green dye and the IncuCyte software. Transcriptional profiling of the neuroblastoma organoids was done by RNA sequencing and MHC-I expression of the neuroblastoma organoids was determined by flow cytometry.ResultsWe showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling of the neuroblastoma organoids showed that this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independently of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells.ConclusionsWe demonstrated that 50% of tested neuroblastoma organoids can effectively activate TEG002 and that killing of the organoids is independent of MHC-I expression. Hence, this pilot study identified TEG002 as a promising novel cellular product for immunotherapy for a subset of neuroblastoma tumors, warranting further investigations into its clinical application.Disclosure InformationJ.G.M. Strijker: None. E. Drent: A. Employment (full or part-time); Significant; Gadeta BV. J.J.F. van der Hoek: None. R. Pscheid: A. Employment (full or part-time); Significant; Gadeta BV. B. Koopmans: None. K. Ober: None. S.R. van Hooff: None. W.M. Kholosy: None. C. Coomans: A. Employment (full or part-time); Significant; Gadeta BV. A. Bisso: A. Employment (full or part-time); Significant; Gadeta BV. M. van Loenen: A. Employment (full or part-time); Significant; Gadeta BV. J.J. Molenaar: None. J. Wienke: None.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1137
Author(s):  
Kirsty Marshall ◽  
Bhupinder Sharma ◽  
Thomas Millard ◽  
Sahil Chhabda ◽  
Fayed Sheikh ◽  
...  

Background Central nervous system (CNS) lymphomas are a rare subset of lymphoma, which are associated with a poor outcome. The gold standard for CNS imaging is with gadolinium-enhanced magnetic resonance imaging (MRI); however, there are a number of limitations, including some patients with small persistent abnormalities from scarring due to focal haemorrhage or from a previous biopsy, which can be difficult to discern from residual tumour. [18F]Fluoromethylcholine positron emission tomography–computed tomography (FCH-PET/CT) uses an analogue of choline, which due to the upregulation of choline kinase in tumour cells, allows increased uptake of FCH. As there is minimal background grey matter uptake of FCH, FCH-PET/CT can be used in CNS imaging and provide a useful tool for response assessment. Methods This is a cohort study, where we identified 40 patients with a diagnosis of primary or secondary CNS lymphoma between 1st November 2011 and 10th October 2019. Results 26 of the 40 patients (65%) had concordant results. Of the discordant results, 11 out of 14 had partial response (PR) on MRI but showed a metabolic complete response (mCR) on FCH-PET. The overall response rates (ORR) were similar between the two modalities (90% for MRI versus 95% with FCT-PET/CT). Conclusion We conclude that FCH-PET/CT is a reasonable alternative mode of imaging to gadolinium-enhanced MRI brain imaging, providing a new tool for assessment of CNS lymphoma.


2021 ◽  
Vol 11 (9) ◽  
pp. 923
Author(s):  
Josephine G. M. Strijker ◽  
Ronja Pscheid ◽  
Esther Drent ◽  
Jessica J. F. van der Hoek ◽  
Bianca Koopmans ◽  
...  

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.


2019 ◽  
Author(s):  
K. Vyse ◽  
L. Faivre ◽  
M. Romich ◽  
M. Pagter ◽  
D. Schubert ◽  
...  

AbstractChromatin regulation ensures stable repression of stress-inducible genes under non-stress conditions and transcriptional activation and memory of such an activation of those genes when plants are exposed to stress. However, there is only limited knowledge on how chromatin genes are regulated at the transcriptional and post-transcriptional level upon stress exposure and relief from stress. We have therefore set-up a RT-qPCR-based platform for high-throughput transcriptional profiling of a large set of chromatin genes. We find that the expression of a large fraction of these genes is regulated by cold. In addition, we reveal an induction of several DNA and histone demethylase genes and certain histone variants after plants have been shifted back to ambient temperature (deacclimation), suggesting a role in the memory of cold acclimation. We also re-analyse large scale transcriptomic datasets for transcriptional regulation and alternative splicing (AS) of chromatin genes, uncovering an unexpected level of regulation of these genes, particularly at the splicing level. This includes several vernalization regulating genes whose AS results in cold-regulated protein diversity. Overall, we provide a profiling platform for the analysis of chromatin regulatory genes and integrative analyses of their regulation, suggesting a dynamic regulation of key chromatin genes in response to low temperature stress.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ebru Aydin ◽  
Sebastian Faehling ◽  
Mariam Saleh ◽  
Laura Llaó Cid ◽  
Martina Seiffert ◽  
...  

Phosphoinositide 3-kinases (PI3Ks) and their downstream proteins constitute a signaling pathway that is involved in both normal cell growth and malignant transformation of cells. Under physiological conditions, PI3K signaling regulates various cellular functions such as apoptosis, survival, proliferation, and growth, depending on the extracellular signals. A deterioration of these extracellular signals caused by mutational damage in oncogenes or growth factor receptors may result in hyperactivation of this signaling cascade, which is recognized as a hallmark of cancer. Although higher activation of PI3K pathway is common in many types of cancer, it has been therapeutically targeted for the first time in chronic lymphocytic leukemia (CLL), demonstrating its significance in B-cell receptor (BCR) signaling and malignant B-cell expansion. The biological activity of the PI3K pathway is not only limited to cancer cells but is also crucial for many components of the tumor microenvironment, as PI3K signaling regulates cytokine responses, and ensures the development and function of immune cells. Therefore, the success or failure of the PI3K inhibition is strongly related to microenvironmental stimuli. In this review, we outline the impacts of PI3K inhibition on the tumor microenvironment with a specific focus on CLL. Acknowledging the effects of PI3K inhibitor-based therapies on the tumor microenvironment in CLL can serve as a rationale for improved drug development, explain treatment-associated adverse events, and suggest novel combinatory treatment strategies in CLL.


Sign in / Sign up

Export Citation Format

Share Document