Stem cell factor increases the expression of FLIP that inhibits IFNγ-induced apoptosis in human erythroid progenitor cells

Blood ◽  
2003 ◽  
Vol 101 (4) ◽  
pp. 1324-1328 ◽  
Author(s):  
Ik-Joo Chung ◽  
Chunhua Dai ◽  
Sanford B. Krantz

Interferon γ (IFNγ) acts on human erythroid colony-forming cells (ECFCs) to up-regulate Fas, without a demonstrable change of Fas ligand (FasL) or Fas-associated DD-containing protein (FADD) expression and activates caspase-8 plus caspase-3, which produce apoptosis. Our previous data showed that stem cell factor (SCF) reduced the inhibitory effect of IFNγ on human ECFCs when both factors were present in the cultures. However, the mechanism by which SCF prevents IFNγ-induced apoptosis in ECFCs is unclear. In this study we used highly purified human ECFCs to investigate the mechanism of the effect of SCF on IFNγ-induced apoptosis. Because the binding of FasL to Fas is the first step of the apoptosis cascade and IFNγ strongly up-regulates Fas expression, we added FasL (50 ng/mL) to the cultures with IFNγ to accentuate the IFNγ-induced activation of caspase-8 and caspase-3 plus subsequent apoptosis. SCF (100 ng/mL) clearly inhibited the activation of caspase-8 and caspase-3 induced by IFNγ and/or FasL, and it also reduced apoptosis as measured by the terminal dUTP nick-end labeling (TUNEL) assay. SCF did not decrease the surface expression of Fas on the ECFCs. FADD-like interleukin 1 β (IL-1β)–converting enzyme (FLICE)–inhibitory protein (FLIP) has been reported to interact with FADD and/or caspase-8 at the death-inducing signaling complex (DISC) level following Fas stimulation and acts as a dominant-negative caspase-8. SCF increased FLIP mRNA and protein expression, concomitant with reduced apoptosis, whereas IFNγ and/or FasL did not change FLIP expression. Reduction of FLIP expression with antisense oligonucleotides decreased the capacity of SCF to inhibit IFNγ-induced apoptosis, demonstrating a definite role for FLIP in the SCF-induced protection of ECFCs from IFNγ-initiated apoptosis.

2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Shili Zhao ◽  
Junxia Feng ◽  
Qi Wang ◽  
Lu Tian ◽  
Yunfang Zhang ◽  
...  

Apoptosis of podocytes contributes to proteinuria in many chronic kidney diseases. The cytokine, tumor necrosis factor-α (TNF-α) is thought to be involved in podocyte apoptosis, but the underlying mechanism is not understood. In our study, we established a model of TNF-α-induced apoptosis by isolating primary podocytes from mice. After exposing cells to TNF-α, we determined the expression levels of heterogeneous nuclear ribonucleoprotein K (hnRNP K) and cellular FLICE-inhibitory protein (c-FLIP) and the phosphorylation levels of glycogen synthase kinase β (GSK3β) and extracellular signal-regulated kinase (ERK). We then knocked down or overexpressed the levels of hnRNP K and observed its effects on the expressions of c-FLIP, caspase-8, caspase-3, and the phosphorylation of GSK3β and ERK. In addition, we examined the percentage of cells undergoing apoptosis and studied cell cycle distribution. We found that TNF-α induced apoptosis in podocytes and that the expressions of hnRNP K and c-FLIP were significantly decreased, whereas the phosphorylations of GSK3β and ERK were significantly increased. Both gene knockdown and overexpression of hnRPN K resulted in varied expressions/phosphorylations of c-FLIP, GSK3β, and ERK. Moreover, decreased hnRPN K expression contributed to increased levels of caspase-8 and capase-3, as well as an increase in cell apoptosis and G0/G1 arrest. In conclusion, down-regulated expression of hnRNP K by TNF-α resulted in a decrease in the expression of c-FLIP as well as increases in phosphorylated GSK3β, ERK, caspase-8, and caspase-3, and then critically contributed to the podocyte apoptosis.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 336-343 ◽  
Author(s):  
Isabel Perez-Cruz ◽  
Juan M. Carcamo ◽  
David W. Golde

Abstract The FAS receptor—FAS ligand system is a key apoptotic pathway for cells of the immune system. Ligation of the FAS-receptor (CD95) induces apoptosis by activation of pro—caspase-8 followed by downstream events, including an increase in reactive oxygen species (ROS) and the release of proapoptotic factors from the mitochondria, leading to caspase-3 activation. We investigated the role of vitamin C in FAS-mediated apoptosis and found that intracellular accumulation of pharmacologic concentrations of vitamin C inhibited FAS-induced apoptosis in the monocytic U937 cell line and in fresh human monocytes. Cells were loaded with vitamin C by exposure to dehydroascorbic acid (DHA), thereby circumventing in vitro artifacts associated with the poor transport and pro-oxidant effects of ascorbic acid (AA). Vitamin C inhibition of FAS-mediated apoptosis was associated with reduced activity of caspase-3, -8, and -10, as well as diminished levels of ROS and preservation of mitochondrial membrane integrity. Mechanistic studies indicated that the major effect of vitamin C was inhibition of the activation of caspase-8 with no effect on it enzymatic activity. An independent action of high intracellular concentrations of vitamin C on mitochondrial membrane stabilization was also detected. These studies illuminate the nature of redox-dependent signaling in FAS-induced apoptosis of human monocytes and suggest that vitamin C can modulate the immune system by inhibiting FAS-induced monocyte death. (Blood. 2003;102:336-343)


2003 ◽  
Vol 228 (4) ◽  
pp. 406-412 ◽  
Author(s):  
Jason C. Lambert ◽  
Zhanxiang Zhou ◽  
Y. James Kang

Apoptosis is critically involved in hepatic pathogenesis induced by acute alcohol exposure. This study was undertaken to test the hypothesis that zinc interferes with an important Fas ligand-mediated pathway in the liver, leading to the inhibition of ethanol-induced apoptosis. Male 129/SvPCJ mice were injected subcutaneously with ZnSO4 (5 mg of Zn ion/kg) in 12-hr intervals for 24 hr before intragastric administration of ethanol (5 g/kg) in 12-hr intervals for 36 hr. Ethanol-induced apoptosis in the liver was detected by a terminal deoxynucleotidyl transferase nick-end labeling assay and was further confirmed by electron microscopy. The number of apoptotic cells in the livers pretreated with zinc was significantly decreased, being only 15% of that found in the animals treated with ethanol only. Characteristic apoptotic morphological changes observed by electron microscopy were also inhibited by zinc. Importantly, zinc inhibited ethanol-induced activation of caspase-3, the primary executioner protease responsible for alcohol-induced liver apoptosis, and caspase-8 as determined by enzymatic assay. Immunohistochemical analysis revealed that zinc inhibited ethanol-induced endogenous Fas ligand activation, which is a key component in signaling pathways leading to hepatic caspase-8 and subsequent caspase-3 activation and apoptosis. These results demonstrate that zinc is a potent inhibitor of acute ethanol-induced liver apoptosis, and this effect occurs primarily through zinc interference with Fas ligand pathway and the suppression of caspase-3.


2000 ◽  
Vol 74 (3) ◽  
pp. 1513-1523 ◽  
Author(s):  
Siddharth Balachandran ◽  
P. Christopher Roberts ◽  
Todd Kipperman ◽  
Kapil N. Bhalla ◽  
Richard W. Compans ◽  
...  

ABSTRACT Interferon (IFN) mediates its antiviral effects by inducing a number of responsive genes, including the double-stranded RNA (dsRNA)-dependent protein kinase, PKR. Here we report that inducible overexpression of functional PKR in murine fibroblasts sensitized cells to apoptosis induced by influenza virus, while in contrast, cells expressing a dominant-negative variant of PKR were completely resistant. We determined that the mechanism of influenza virus-induced apoptosis involved death signaling through FADD/caspase-8 activation, while other viruses such as vesicular stomatitis virus (VSV) and Sindbis virus (SNV) did not significantly provoke PKR-mediated apoptosis but did induce cytolysis of fibroblasts via activation of caspase-9. Significantly, treatment with IFN-α/β greatly sensitized the fibroblasts to FADD-dependent apoptosis in response to dsRNA treatment or influenza virus infection but completely protected the cells against VSV and SNV replication in the absence of any cellular destruction. The mechanism by which IFN increases the cells' susceptibility to lysis by dsRNA or certain virus infection is by priming cells to FADD-dependent apoptosis, possibly by regulating the activity of the death-induced signaling complex (DISC). Conversely, IFN is also able to prevent the replication of viruses such as VSV that avoid triggering FADD-mediated DISC activity, by noncytopathic mechanisms, thus preventing destruction of the cell.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tingting Meng ◽  
Ying Zhou ◽  
Jingkun Li ◽  
Meilin Hu ◽  
Xiaomeng Li ◽  
...  

Background and Objective. This study investigated the effects and underlying mechanisms of azithromycin (AZM) treatment on the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) after their stimulation with TNF-α in vitro. Methods. PDLSCs were isolated from periodontal ligaments from extracted teeth, and MTS assay was used to evaluate whether AZM and TNF-α had toxic effects on PDLSCs viability and proliferation. After stimulating PDLSCs with TNF-α and AZM, we analyzed alkaline phosphatase staining, alkaline phosphatase activity, and alizarin red staining to detect osteogenic differentiation. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the mRNA expression of osteogenic-related genes, including RUNX2, OCN, and BSP. Western blotting was used to measure the NF-κB signaling pathway proteins p65, phosphorylated p65, IκB-α, phosphorylated IκB-α, and β-catenin as well as the apoptosis-related proteins caspase-8 and caspase-3. Annexin V assay was used to detect PDLSCs apoptosis. Results. TNF-α stimulation of PDLSCs decreased alkaline phosphatase and alizarin red staining, alkaline phosphatase activity, and mRNA expression of RUNX2, OCN, and BSP in osteogenic-conditioned medium. AZM enhanced the osteogenic differentiation of PDLSCs that were stimulated with TNF-α. Western blot analysis showed that β-catenin, phosphorated p65, and phosphorylated IκB-α protein expression decreased in PDLSCs treated with AZM. In addition, pretreatment of PDLSCs with AZM (10 μg/ml, 20 μg/ml) prevented TNF-α-induced apoptosis by decreasing caspase-8 and caspase-3 expression. Conclusions. Our results showed that AZM promotes PDLSCs osteogenic differentiation in an inflammatory microenvironment by inhibiting the WNT and NF-κB signaling pathways and by suppressing TNF-α-induced apoptosis. This suggests that AZM has potential as a clinical therapeutic for periodontitis.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3658-3668 ◽  
Author(s):  
Birgit Panzenböck ◽  
Petr Bartunek ◽  
Markus Y. Mapara ◽  
Martin Zenke

Abstract Stem cell factor (SCF) and erythropoietin (Epo) effectively support erythroid cell development in vivo and in vitro. We have studied here an SCF/Epo-dependent erythroid progenitor cell from cord blood that can be efficiently amplified in liquid culture to large cell numbers in the presence of SCF, Epo, insulin-like growth factor-1 (IGF-1), dexamethasone, and estrogen. Additionally, by changing the culture conditions and by administration of Epo plus insulin, such progenitor cells effectively undergo terminal differentiation in culture and thereby faithfully recapitulate erythroid cell differentiation in vitro. This SCF/Epo-dependent erythroid progenitor is also present in CD34+ peripheral blood stem cells and human bone marrow and can be isolated, amplified, and differentiated in vitro under the same conditions. Thus, highly homogenous populations of SCF/Epo-dependent erythroid progenitors can be obtained in large cell numbers that are most suitable for further biochemical and molecular studies. We demonstrate that such cells express the recently identified adapter protein p62dok that is involved in signaling downstream of the c-kit/SCF receptor. Additionally, cells express the cyclin-dependent kinase (CDK) inhibitors p21cip1 and p27kip1 that are highly induced when cells differentiate. Thus, the in vitro system described allows the study of molecules and signaling pathways involved in proliferation or differentiation of human erythroid cells.


Blood ◽  
1995 ◽  
Vol 86 (2) ◽  
pp. 572-580 ◽  
Author(s):  
K Muta ◽  
SB Krantz ◽  
MC Bondurant ◽  
CH Dai

Stem cell factor (SCF), the ligand for the c-kit tyrosine kinase receptor, markedly stimulates the accumulation of erythroid progenitor cells in vitro. We now report that SCF delays erythroid differentiation among the progeny of individual erythroid progenitors while greatly increasing the proliferation of these progeny. These effects appear to be independent of an effect on maintenance of cell viability. Highly purified day-6 erythroid colony-forming cells (ECFC), consisting mainly of colony-forming units-erythroid (CFU-E), were generated from human peripheral blood burst-forming units-erythroid (BFU-E). Addition of SCF to the ECFC in serum-free liquid culture, together with erythropoietin (EP) and insulin-like growth factor 1 (IGF-1), resulted in a marked increase in DNA synthesis, associated with a delayed peak in cellular benzidine positivity and a delayed incorporation of 59Fe into hemoglobin compared with cultures without SCF. In the presence of SCF, the number of ECFC was greatly expanded during this culture period, and total production of benzidine-positive cells plus hemoglobin synthesis were ultimately increased. To determine the effect of SCF on individual ECFC, single-cell cultures were performed in both semisolid and liquid media. These cultures demonstrated that SCF, in the presence of EP and IGF-1, acted on single cells and their descendants to delay erythroid differentiation while substantially stimulating cellular proliferation, without an enhancement of viability of the initial cells. This was also evident when the effect of SCF was determined using clones of ECFC derived from single BFU-E. Our experiments demonstrate that SCF acts on individual day-6 ECFC to retard erythroid differentiation while simultaneously providing enhanced proliferation by a process apparently independent of an effect on cell viability or programmed cell death.


Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 114-126 ◽  
Author(s):  
Michael Haslauer ◽  
Kurt Baltensperger ◽  
Hartmut Porzig

Proliferation, differentiation, and survival of erythroid progenitor cells are mainly regulated by stem cell factor (SCF) and erythropoietin (Epo). Using normal human progenitors, we analyzed the role of Ca2+-sensitive protein kinase C (PKC) subtypes and of G-protein–coupled receptor ligands on growth factor–dependent DNA synthesis. We show that stimulation of DNA synthesis by the two growth factors requires activation of PKC. Inhibitors of Ca2+-activated PKC subtypes blocked the growth factor–induced 3H-thymidine incorporation. SCF and Epo caused no significant translocation of PKC into the membrane, but treatment of intact cells with either of the two cytokines resulted in enhanced activity of immunoprecipitated cytosolic PKC. Stimulation of PKC with the phorbol ester PMA mimicked the cytokine effect on DNA synthesis. Epo-, SCF-, and PMA-induced thymidine incorporation was potently inhibited by thrombin (half-maximal inhibition with 0.1 U/mL). This effect was mediated via the G-protein-coupled thrombin receptor and the Rho guanosine triphosphatase. Adenosine diphosphate caused a modest Ca2+-dependent stimulation of DNA synthesis in the absence of cytokines and specifically enhanced the effect of SCF. Cyclic 3′,5′-adenosine monophosphate exerted a selective inhibitory effect on Epo-stimulated thymidine incorporation. Our results define PKC as major intermediate effector of cytokine signaling and suggest a role for thrombin in controlling erythroid progenitor proliferation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Wang ◽  
Chunhui Xia ◽  
Wei Chen ◽  
Yuhang Chen ◽  
Yiyi Wang ◽  
...  

Photodynamic therapy (PDT) is a novel and promising antitumor treatment. Our previous study showed that hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy) phthalocyanine zinc- (TαPcZn-) mediated PDT (TαPcZn-PDT) inhibits the proliferation of human hepatocellular carcinoma Bel-7402 cells by triggering apoptosis and arresting cell cycle. However, mechanisms of TαPcZn-PDT-induced apoptosis of Bel-7402 cells have not been fully clarified. In the present study, therefore, effect of TαPcZn-PDT on apoptosis, P38MAPK, p-P38MAPK, Caspase-8, Caspase-3, Bcl-2, Bid, Cytochrome c, and mitochondria membrane potential in Bel-7402 cells without or with P38MAPK inhibitor SB203580 or Caspase-8 inhibitor Ac-IEFD-CHO was investigated by haematoxylin and eosin (HE) staining assay, flow cytometry analysis of annexin V-FITC/propidium iodide (PI) double staining cells and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and immunoblot assay. We found that TαPcZn-PDT resulted in apoptosis induction, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. In contrast, SB203580 or Ac-IEFD-CHO attenuated induction of apoptosis, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. Taken together, we conclude that Caspase-3, Bcl-2, Bid, and mitochondria are involved in autoregulatory feedback of P38MAPK/Caspase-8 during TαPcZn-PDT-induced apoptosis of Bel-7402 cells.


Sign in / Sign up

Export Citation Format

Share Document