Mitochondrial DNA sequence heterogeneity in circulating normal human CD34 cells and granulocytes

Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4466-4477 ◽  
Author(s):  
Myung Geun Shin ◽  
Sachiko Kajigaya ◽  
Magdalena Tarnowka ◽  
J. Philip McCoy ◽  
Barbara C. Levin ◽  
...  

Abstract We have reported marked mitochondrial DNA (mtDNA) sequence heterogeneity among individual CD34 clones from adult bone marrow (BM) and the age-dependent accumulation of mtDNA mutations in this mitotically active tissue. Here, we show direct evidence of clonal expansion of cells containing mtDNA mutations and that the mtDNA sequence may be easily determined by using peripheral blood (PB) as a CD34 cell source. Analysis of 594 circulating CD34 clones showed that 150 (25%) had mtDNA sequences different from the same donor's corresponding aggregate sequence. Examination of single granulocytes indicated that 103 (29%) from the same 6 individuals showed mtDNA heterogeneity, with sequences distinct from the corresponding aggregate tissue sequence and from the sequences of other single granulocytes. Circulating and BM CD34 cells showed virtually identical patterns of mtDNA heterogeneity, and the same changes were seen in progeny granulocytes as in their progenitors, indicating that blood sampling could be used in studies to determine whether mtDNA reflects an individual's cumulative or recent exposure to mutagens; as a marker of individual hematopoietic progenitors, stem cells, and their expansion; and for the detection of minimal residual disease in hematologic malignancies of CD34 cell origin. (Blood. 2004;103:4466-4477)

Blood ◽  
2005 ◽  
Vol 106 (9) ◽  
pp. 3271-3284 ◽  
Author(s):  
Yoji Ogasawara ◽  
Kazutaka Nakayama ◽  
Magdalena Tarnowka ◽  
J. Philip McCoy ◽  
Sachiko Kajigaya ◽  
...  

Abstract Previously, we described the age-dependent accumulation of mitochondrial DNA (mtDNA) mutations, leading to a high degree of mtDNA heterogeneity among normal marrow and blood CD34+ clones and in granulocytes. We established a method for sequence analysis of single cells. We show marked, distinct mtDNA heterogeneity from corresponding aggregate sequences in isolated cells of 5 healthy adult donors—37.9% ± 3.6% heterogeneity in circulating CD34+ cells, 36.4% ± 14.1% in T cells, 36.0% ± 10.7% in B cells, and 47.7% ± 7.4% in granulocytes. Most heterogeneity was caused by poly-C tract variability; however, base substitutions were also prevalent, as follows: 14.7% ± 5.7% in CD34+ cells, 15.2% ± 9.0% in T cells, 15.4% ± 6.7% in B cells, and 32.3% ± 2.4% in granulocytes. Many poly-C tract length differences and specific point mutations seen in these same donors but assayed 2 years earlier were still present in the new CD34+ samples. Additionally, specific poly-C tract differences and point mutations were frequently shared among cells of the lymphoid and myeloid lineages. Secular stability and lineage sharing of mtDNA sequence variability suggest that mutations arise in the lymphohematopoietic stem cell compartment and that these changes may be used as a natural genetic marker to estimate the number of active stem cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3217-3217
Author(s):  
Yoji Ogasawara ◽  
Kazutaka Nakayama ◽  
Magdalena Tarnowka ◽  
J. Philip McCoy ◽  
Jeffrey J. Molldrem ◽  
...  

Abstract Abnormalities of mitochondrial DNA (mtDNA) are responsible for a variety of inherited syndromes and have been broadly implicated in aging, cancer, and autoimmunity diseases. Mutations in mtDNA have been reported in myelodysplasia and leukemia, although their pathogenic mechanism remains uncertain. We have described age-dependent accumulation of mtDNA mutations, leading to a high degree of mtDNA sequence heterogeneity among normal marrow and blood CD34 cells as well as in granulocytes (Shin M et al, Blood101:3118 [2003], 103:553 [2004], 103:4466 [2004]). In order to examine mtDNA heterogeneity in detail, we developed a method for analysis of the mtDNA control region from single cells that were sorted by flow cytometry. Highly purified populations of CD34 cells, T cells, B cells, and granulocytes were obtained from five healthy adult donors. The sequence of the individual cells’ mtDNA was compared to the aggregate mtDNA for the respective cell type and differences were expressed as a measure of mtDNA heterogeneity among cells. Overall, heterogeneity was high: for circulating CD34 cells, 38±3.4%; for T cells, 37±14%; B cells, 36±10.8%; and for granulocytes, 48±7.2% (the value for granulocytes statistically differed from CD34 cells; p = 0.03). Most intercellular heterogeneity was due to polyC tract length variability; however, mtDNA base substitution mutations were also prevalent: 15±5.5% in CD34 cells; 15±9.0% in T cells, 15±6.7% in B cells; and 33±2.4% for granulocytes (granulocytes were significantly higher than other cells; p < 0.01). The higher rate of base substitution in granulocytes may reflect their greater exposure to reactive oxygen species. Surprisingly, for both polyC tract length differences and point mutations, the specific mtDNA abnormalities and the proportion of circulating cells characterized by these changes were similar among different cell lineages and relatively constant over time (~2 years) in the same donors. One inference from these results is that mtDNA heterogeneity during development is fixed in the primitive lymphohematopoietic stem cell compartment. In contrast to normal adults, circulating CD34 cells from patients obtained even years after successful allogeneic stem cell transplantation showed a remarkable level of mtDNA homogeneity, similar to the uniformity we have previously observed in cord blood CD34 cells and consistent with limited numbers of stem cells active in these individuals. Leukemic blast cells (from patients with AML-M2, AML evolving from CMML, and T-PLL) also showed a high degree of homogeneity. We propose that mtDNA sequence of single cells may be utilized as a natural genetic marker of hematopoietic progenitors and stem cells; to detect minimal residual disease in leukemia; and as a measure of the accumulation of mutagenic events in mammalian cells in vivo and in vitro.


Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3756-3765 ◽  
Author(s):  
Ngaire J. Elwood ◽  
Helen Zogos ◽  
Daniel S. Pereira ◽  
John E. Dick ◽  
C. Glenn Begley

Abstract The product of the SCL gene is a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of hematopoietic stem cells in both the embryo and the adult. However, once the stem cell compartment is established, the function of SCL in subsequent differentiation and commitment events within normal hematopoietic cells remains undefined. The aim of the current study was to investigate this role using purified normal human hematopoietic CD34+ cells. An SCL retrovirus was used to transduce CD34+ cells isolated from human bone marrow, peripheral blood, and umbilical cord blood. Enforced expression of SCL increased by a median of twofold the number of erythroid colonies, with an increase in both colony size and the rate of hemoglobinization. Unexpectedly, enforced expression in CD34+ cells also significantly increased the number of megakaryocyte colonies, but with no impact on the size of colonies. There was no consistent effect on the number nor size of granulocyte-macrophage (GM) colonies. The proliferative effect of enforced SCL expression on erythroid cells was attributed to a shortened cell cycle time; the self-renewal capacity of erythroid or GM progenitors was unchanged, as was survival of cells within colonies. These results demonstrate a role for SCL in determining erythroid and megakaryocyte differentiation from normal human hematopoietic CD34+ cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3859-3859
Author(s):  
Li ang Li ◽  
Tinisha McDonald ◽  
Hardik Modi ◽  
Arjun Sehgal ◽  
Ravi Bhatia

Abstract SHP-2 (ptpn11), a Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase, is expressed at high levels in hematopoietic cells and regulates downstream signaling from growth factor (GF) receptors. SHP-2 has been shown to play an important role in murine hematopoiesis. Moreover, several SHP-2 activating mutations have been identified in myeloid malignancies and there is interest in the development of SHP-2 inhibitors for cancer treatment. On the other hand previous report suggested that SHP-2 inhibition was associated with enhanced GF responsiveness in human hematopoietic cell lines. However the role of SHP-2 signaling in normal human hematopoietic stem and progenitor cell growth has not been studied. Here we investigated the function of SHP-2 in normal human hematopoiesis by inhibiting SHP-2 expression in cord blood (CB) CD34+ cells with stable SHP-2 shRNA expression. We transduced CB CD34+ cells with lentivirus vectors coexpressing SHP-2 specific shRNAs (Si-1 or Si-2) or a control shRNA (Ctrl) and RFP and selected RFP expressing CD34+ cells by flow cytometry sorting. We observed >80% inhibition of SHP-2 expression by Western blotting in Si-1 or Si-2 shRNA transduced cells compared with Ctrl shRNA transduced cells. We observed that culture with increasing concentrations of GF was associated with markedly reduced GF-induced stimulation of proliferation of SHP-2-knockdown CD34+ cells compared to controls. In addition we observed significantly increased apoptosis of SHP-2-knockdown CD34+ cells cultured under low and high GF conditions compared to controls, but little increase in apoptosis in GF-deprived cells, indicating markedly reduced response of SHP-2-knockdown cells to GF-mediated promotion of cell survival. SHP-2-knockdown CD34+ cells also demonstrated significantly reduced expansion in cell numbers following culture in high GF conditions compared with controls (115.3, 25.5 and 10.4 fold expansion for Ctrl, Si-1 and Si-2 at day 7). Analysis of the nature of cells generated in GF culture showed significantly reduced generation of both myeloid (CD33+, CD11b+ and CD14+) and erythroid cells from SHP-2-knockdown CD34+ cells compared with controls, with relatively greater inhibition of myeloid compared with erythroid differentiation. On the other hand CD34+ cell numbers were retained at levels similar to controls after culture. We also observed significantly reduced cell expansion and differentiation and higher apoptotic rates of SHP-2-knockdown cells cultured under either myeloid promoting (IL-3+SCF+G-CSF+GM-CSF) or erythroid promoting (SCF+EPO) GF conditions. SHP-2-knockdown cells demonstrated reduced activation of MAPK and STAT5 but not Akt on Western blotting that was associated with reduced MCL-1 expression, consistent with their reduced GF mediated proliferation and survival. Expression of the transcription factors SCL1, GATA-1, NF-E2 and FOG-1 was increased in SHP-2 knockdown CD34+ cells compared to controls, consistent with the relatively higher retention of CD34+ and erythroid cells compared with myeloid cells after culture. In conclusion, we show that SHP-2 knockdown in human CD34+ cells results in markedly decreased responsiveness to GF stimulation with significantly increased apoptosis, markedly diminished proliferation and reduced generation of differentiated cells during GF culture. A relative retention of the CD34+ cell population was seen despite increased apoptosis, which may be the result of reduced cell turnover and altered transcription factor expression in SHP-2-knockdown cells, and is in contrast to reduced stem cell self-renewal observed following SHP-2 knockdown in murine models. These results indicate a critical role for SHP-2 in GF mediated signaling responses in human hematopoietic stem/progenitor cells. These studies also caution that therapeutic SHP-2 inhibition could be associated with significant hematopoietic toxicity.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3309-3309
Author(s):  
Kwok Peng Ng ◽  
Quteba Ebrahem ◽  
Soledad Negrotto ◽  
Reda Mahfouz ◽  
Kevin Link ◽  
...  

Abstract Abstract 3309 The cytosine analogue decitabine can induce both apoptosis and epigenetic/differentiation effects. Although the regimen commonly used to treat myelodysplastic syndrome has de-escalated doses with an epigenetic mechanism of action in mind, therapy continues to resemble pulse-cycled therapy for apoptosis objectives. This contrasts with the lower dose and one to three times per week schedule of decitabine used for non-cytotoxic epigenetic-differentiation therapy of non-malignant disease. Non-cytotoxic differentiation therapy could have substantial advantages, such as sparing of normal hematopoietic stem cells (HSC), decreased therapy related cytopenia that enables more frequent treatment exposure (a critical consideration with S-phase specific therapy), and a p53-independent mechanism of action. These possibilities were assessed in vitro and in vivo. Concentrations of decitabine that deplete DNMT1 in normal HSC without causing measurable DNA damage or apoptosis were determined. Treatment with equimolar AraC was used as a control. These concentrations of decitabine and AraC (0.5 μM) were used to treat p53 wild-type AML cells produced by retroviral insertion of MLL-AF9 into human CD34+ cells. Unlike AraC, decitabine did not induce apoptosis, but nonetheless terminated AML cell proliferation, accompanied by morphologic changes of differentiation, increased CD14 expression, and late and substantial upregulation of key proteins associated with myeloid cell cycle exit by differentiation, CEBPe and CDKN1B/p27. Decitabine produced an identical effect in p53 null MLL-AF9 leukemia cells (THP1 cells). In contrast, the p53 null cells did not demonstrate apoptosis, differentiation or proliferation inhibition in response to AraC. To determine if the non-cytotoxic differentiation terminated the self-renewal ability of leukemia initiating cells, p53 wild-type MLL-AF9 cells and normal HSC were treated with the identical regimen of decitabine or PBS in vitro then assayed for engraftment ability in NOD/SCID mice. Mice receiving the combination of mock treated normal and mock treated MLL-AF9 cells died of overwhelming leukemia by week 6. Mice receiving the combination of decitabine-treated normal and decitabine-treated MLL-AF9 cells remained healthy and after greater than twice the period of survival of the control group, were documented to have normal human hematopoietic cell engraftment, comparable to that seen in mice receiving normal human CD34+ cells without leukemia cells. To confirm that 0.2 mg/kg of decitabine administered sub-cutaneously on a weekly basis depletes DNMT1 without causing cytotoxicity or severe cytopenia in vivo, NSG mice were treated for 8 weeks. There was no treatment associated cytopenia or bone marrow cell apoptosis although DNMT1 was substantially depleted in bone marrow cells. This decitabine regimen, conventional AraC or vehicle was then used to treat xeno-transplant models of p53 wild-type and p53 null human AML (n=5 per group). In the p53 wild-type model, decitabine treatment was associated with significantly longer median survival than vehicle (>50% increase in survival, median survival 92 versus 61 days, Log-Rank p=0.0188), with one decitabine treated mouse without evidence of disease when the experiment was terminated on day 150. In the p53-null model, decitabine treatment was associated with significantly longer median survival (>20% increase) than AraC and vehicle treated mice (median survival 51, 45, and 42 days respectively, Log-Rank p=0.0004). To complement the above experiment in which AML cell lines were used, a xenotransplant model was established using fresh AML cells from a patient with relapsed treatment refractory AML. These AML cells contained complex chromosome abnormalities. Mice treated with decitabine (n=7) had significantly longer median survival (>100% increase) than AraC or vehicle treated mice (median survival 113, 56, and 50 days respectively, Log-Rank p<0.0001). These observations provide the foundation for AML therapy that is mechanistically distinct and a true alternative to conventional apoptosis-based therapy. This approach to therapy was non-toxic and highly effective in the pre-clinical in vivo models of human AML, as expected from its non-apoptosis based, p53-independent, and normal HSC sparing mechanism of action, and warrants further pre-clinical and clinical study. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 3784-3793 ◽  
Author(s):  
Ryan Reca ◽  
Dimitrios Mastellos ◽  
Marcin Majka ◽  
Leah Marquez ◽  
Janina Ratajczak ◽  
...  

Abstract Complement has recently been implicated in developmental pathways and noninflammatory processes. The expression of various complement components and receptors has been shown in a wide range of circulating myeloid and lymphoid cells, but their role in normal hematopoiesis and stem cell homing has not yet been investigated. We report that normal human CD34+ cells and lineage-differentiated hematopoietic progenitors express the complement anaphylatoxin C3a receptor (C3aR) and respond to C3a. Moreover, C3a, but not the biologically inactive desArg-C3a, induces calcium flux in these cells. Furthermore, we found that C3 is secreted by bone marrow stroma and that, although C3a does not influence directly the proliferation/survival of hematopoietic progenitors, it (1) potentiates the stromal cell–derived factor 1 (SDF-1)–dependent chemotaxis of human CD34+ cells and lineage-committed myeloid, erythroid, and megakaryocytic progenitors; (2) primes SDF-1–dependent trans-Matrigel migration; and (3) stimulates matrix metalloproteinase-9 secretion and very late antigen 4 (VLA-4)–mediated adhesion to vascular cell adhesion molecule 1 (VCAM-1). Furthermore, we found that murine Sca-1+ cells primed by C3a engrafted faster in lethally irradiated animals. These results indicate that normal human hematopoietic stem and progenitor cells express functional C3aR and that the C3aR-C3a axis sensitizes the responses of these cells to SDF-1 and thus may be involved in promoting their homing into the bone marrow via cross talk with the SDF–CXC chemokine receptor-4 (CXCR4) signaling axis. C3a is the first positive regulator of this axis to be identified.


Blood ◽  
2006 ◽  
Vol 107 (11) ◽  
pp. 4300-4307 ◽  
Author(s):  
Takanori Nakamura ◽  
Yoshitaka Miyakawa ◽  
Atsushi Miyamura ◽  
Akiko Yamane ◽  
Hidenori Suzuki ◽  
...  

AbstractNIP-004 is a novel synthetic compound developed to display human thrombopoietin (TPO) receptor (c-Mpl) agonist activity. NIP-004 displays species specificity, stimulating proliferation or differentiation of human c-Mpl–expressing cells such as UT-7/TPO and human CD34+ cells but not murine c-Mpl–expressing cells or cynomolgus monkey cells. To test the mechanism of its action, we constructed mutant forms of c-Mpl; murine c-MplL490H dis-played a response to NIP-004, whereas human c-MplH499L lost this response, indicating that histidine in the transmembrane domain of c-Mpl is essential for its activity. Because histidine is not present in the c-Mpl transmembrane domain of rats, hamsters, rhesus macaques, and cynomolgus monkeys, we examined the in vivo efficacy of NIP-004 using mice that received xenotransplants. In immunodeficient nonobese diabetic (NOD)/Shi-scid, IL-2Rγnull (NOG) mice receiving transplants of umbilical cord blood–derived CD34+ cells, NIP-004 increased human megakaryoblasts, mature megakaryocytes, and circulating human platelets 6-fold, the latter being morphologically and functionally indistinguishable from normal human platelets. These observations indicate that NIP-004 is a novel human c-Mpl activator and induces human thrombopoiesis.


Oncogene ◽  
2000 ◽  
Vol 19 (16) ◽  
pp. 2060-2066 ◽  
Author(s):  
Jen Jen Yeh ◽  
Kathryn L Lunetta ◽  
Nathalie J van Orsouw ◽  
Francis D Moore ◽  
George L Mutter ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8023-8023
Author(s):  
Surbhi Sidana ◽  
Andriyana Bankova ◽  
Hitomi Hosoya ◽  
Lori S. Muffly ◽  
Shaji Kumar ◽  
...  

8023 Background: MGTA-145 (GroβT), a CXCR2 agonist, has shown promising activity for HSC mobilization with plerixafor in pre-clinical models and healthy volunteers. Methods: This phase 2 single center study evaluates HSC mobilization with MGTA-145 + plerixafor and same day apheresis in patients with multiple myeloma. Patients received plerixafor 0.24 mg/kg (0.16 mg/kg if renal dysfunction) SQ, followed 2 hours later by MGTA-145 (0.03 mg/kg) IV over 3-10 minutes and apheresis within 30 minutes. Mobilization was repeated for a second day if day 1 yield was < 6 x 106 CD34+ cells/kg. This interim analysis reports on mobilization in 10 patients (of 25 planned), including safety cohort of first 6 patients completing transplant. Primary endpoint is collection of 2 x 106 CD34+ cells/kg. Results: Median age was 63 years (range: 46-68), 50% were female, 22% had ISS stage 3 & 50% had high-risk FISH. Induction therapy was VRD in 7 and daratumumab + VRD in 3 patients; median induction duration: 4 months (3-6) & median lenalidomide exposure: 6 cycles (4-6), with > VGPR in 70%. Median total stem cell yield (CD34+ cells/kg x 106) was 7.1 (3-16.2), day 1 yield was 5.4 (1.1-16.2) & yield per apheresis session was 4 (1.1-16.2). 100% of patients met the primary endpoint of collecting sufficient HSCs in < 2 days of mobilization + apheresis to proceed to transplant (2 x 106 CD34+ cells/kg). Secondary endpoints of 4 and 6 x 106 CD34+ cells/kg in < 2 days were met in 90% & 80% patients. 30% patients underwent 1 apheresis, while 70% underwent 2 sessions. MGTA-145 was well tolerated. At least 1 adverse event (AE) was seen in 90% of patients, 20% had grade 2 AEs (anemia, hypokalemia) and 20% had grade 3 AEs (worsening of baseline grade 3 anemia; hypocalcemia); all resolved. Acute & transient bone pain was seen in 40% of patients (back-2, hip-1, sternum-1), all grade 1, all on day 1, & resolved without intervention after 6 minutes (3-10). All 6 patients in the safety cohort have completed transplant with melphalan 200 mg/m2. Median of 4.1 (3.4-5.6) x 106 CD34+ cells/kg were infused. All patients have engrafted timely (DiPersio Blood 2009); median time to neutrophil engraftment: 12 days (11-13) & platelet engraftment: 17 days (16-19). Apheresis graft analysis is available in these 6 patients. Grafts with MGTA-145+plerixafor showed high enrichment for CD90+CD45RA- among CD34+ cells, a CD34 subset of long term engrafting HSCs (median: 31% of CD34+ cells, 27-52), higher than seen with G-CSF (6%, Goncalves TCT 2021). 67% of grafts were minimal residual disease negative with next generation flow cytometry. Conclusions: This is the first study to evaluate the novel regimen of MGTA-145 + plerixafor for same day stem cell mobilization & collection in myeloma/hematologic malignancies, with 100% efficacy in interim analysis and the first to demonstrate successful engraftment in patients with cells collected with this GCSF free regimen. Clinical trial information: NCT04552743.


Sign in / Sign up

Export Citation Format

Share Document