Stimulation of endothelial cell proliferation by FGF-2 in the presence of fibrinogen requires αvβ3

Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3635-3641 ◽  
Author(s):  
Abha Sahni ◽  
Charles W. Francis

We have shown previously that fibrin(ogen) binding potentiates the capacity of fibroblast growth factor 2 (FGF-2) to stimulate endothelial cell (EC) proliferation. We have now investigated the receptor requirement for EC proliferation by fibrinogen-bound FGF-2. ECs were cultured with 25 ng/mL FGF-2 with or without 10 μg/mL fibrinogen, and proliferation was measured as 3H-thymidine incorporation. Proliferation was increased 2.4 ± 0.5-fold over medium alone with FGF-2 and increased significantly more to 4.0 ± 0.7-fold with fibrinogen and FGF-2 (P < .005). Addition of 7E3 or LM609, antibodies to αvβ3, inhibited EC proliferation with fibrinogen-bound FGF-2 by 80% ± 8% (P < .001) or 67% ± 14% (P < .002), respectively, to levels significantly less than that observed with FGF-2 alone (P < .001). Neither LM609 nor 7E3 exhibited any inhibition of activity with FGF-2 alone. Peptide GRGDS caused dose-dependent inhibition of proliferation by fibrinogen-bound FGF-2 of 31% ± 8%, 45% ± 9%, and 68% ± 11% at 0.25, 0.5, and 1 mM, respectively. Coimmunoprecipitation and immunofluorescence studies demonstrated a direct specific association between αvβ3 and FGF receptor 1 (FGFR1) in ECs and fibroblasts when exposed to both FGF-2 and fibrinogen but not with vitronectin. We conclude that fibrinogen binding of FGF-2 enhances EC proliferation through the coordinated effects of colocalized αvβ3 and FGFR1.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1991-1991 ◽  
Author(s):  
Tiziana Grafone ◽  
Manuela Mancini ◽  
Emanuela Ottaviani ◽  
Matteo Renzulli ◽  
Frank Boschelli ◽  
...  

Abstract The tyrosine kinase Bcr-Abl is the fusion product of a reciprocal translocation between chromosomes 9 and 22, known as Philadelphia chromosome and it is present in the leukemic cells of more than 95% of patients with chronic myeloid leukemia (CML). Overexpression of Bcr-Abl in myeloid cells activates various signaling pathways. Previous studies have demonstrated that certain Src family kinases, such as Hck and Lyn, are also targets of Bcr-Abl activity. Hck and Lyn are expressed and activated in CML blast-crisis patients and their increased expression correlates with disease progression or STI571 resistance in some CML patients. Resistance to STI571 seems to be mediated by amplification of or mutations in the Bcr-Abl gene, reducing sensitivity to this inhibitor; newer Abl inhibitors may be susceptible to the same mechanism of resistance. Alternative strategies for control of CML, including the biological relevance of the Bcr-Abl - Src family kinase pathway, are necessary. One such strategy is the use of a specific small molecule Src kinase inhibitor. Recently, a new class of compounds, 4-anilino-3-quinolinecarbonitrile Src kinase inhibitors, has been synthesized. One member of this class, SKI606, is a dual-specificity inhibitor of both Src family and Abl kinases. To investigate the effect in vitro of SKI-606, we analyzed human cell lines from CML patients in blast crisis (K562, MK2, LAMA) and CD34+ from 9 patients in CML blast crisis using a wide range of concentrations (0.01μM-10μM) of this novel agent. Cell cycle analysis, in particular for the cell lines, showed that a major effect of SKI606 is to alter cell cycle progression, producing G1/S arrest. SKI606 induced dose-dependent inhibition of proliferation with IC50 of 1μM at 24hr. Flow cytometric analysis with Annexin-V showed that SKI-606 induced apoptosis of 50% of cells at 48hr. Western blotting and immuno-blotting analyses showed reduced phosphorylation of Bcr-Abl and also of Lyn and Hck. We also demonstrated activation of Caspase-9, an effector cysteine-protease, after exposure to SKI606. These drug effects also reduced the oncogenic effects of the Bcr-Abl gene product in CD34+ cells from patients with CML blast crisis. SKI606 induced a dose-dependent inhibition of proliferation with an IC50 of 1μM at 48hr and induction of apoptosis at 72hr. Cytofluorimetric analysis after 72hr of exposure revealed marked accumulation of cells in the G1 phase of cell cycle, accompanied by a significant increase in the number of apoptotic cells. In some of these patient samples, we observed hypophosphorylation of Bcr-Abl, Hck and Lyn at low concentration of SKI606 (1uM at 24h, 10uM at 48h). Interestingly, CD34+ cells taken from two of our imatinib-resistant patients with Bcr-Abl point mutations (E255K and Y253H) in the P-loop region of the protein exhibited a significant increase of apoptosis (50%) and a block in G1 phase of the cell cycle after treatment with 1 μM SKI606 for 48h. Our study thus showed a potential therapeutic usefulness of the drug in treatment of CML, particularly in blast crisis phase. Ongoing gene expression profiles will contribute to further understanding of the drug mechanism.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1592-1592
Author(s):  
Alissa Huston ◽  
Lanie Francis ◽  
Yazan Alsayed ◽  
Ujjal Singha ◽  
Ganwei Lu ◽  
...  

Abstract The serine-threonine kinase AKT is a mediator of tumor proliferation, and its inhibition leads to induction of apoptosis in MM. Heat shock protein-90 (HSP90) is a chaperone protein involved in the refolding of proteins destabilized by stress, including AKT. HSP90 inhibitors have demonstrated in vitro and in vivo activity in MM, and preliminary activity in a phase I clinical trial in MM. We hypothesized that the combination of agents that target two dysregulated pathways in MM, and that interact at the level of AKT will lead to a synergistic cytotoxic activity in MM. MM cell lines with high level of AKT activity (OPM2) and lower AKT activity (multiple dexamethasone-sensitive MM.1S, dexamethasone-resistant MM.1R, and plasma cell leukemia cell line OPM1) were exposed to serial dilutions of perifosine 2-50uM (KRX-0401, Keryx, NY, NY, provided by the NCI) and 17-DMAG 10-200nM (supplied by NCI) alone and in combination for 48 hrs. Inhibition of proliferation was measured using the MTT proliferation assay. Apoptosis was determined using Annexin V/PI flow cytometry analysis (BD Biosciences, CA). Determination of the additive or synergistic effect of the combination was calculated using the CalcuSyn software (Biosoft, MO) based on the Chou-Talalay method. A two-sided t-test was used to determine differences in response. Perifosine induced a dose dependent inhibition of proliferation in all cell lines tested with 30uM inducing 49% inhibition as compared to control and 50uM inducing 60% inhibition in MM.1S cells. Perifosine 30uM induced more significant apoptosis in cell lines with high AKT activity (OPM2) with 51% apoptosis as compared to 14.7% in MM.1S cells with lower AKT activity (p=0.001). 17-DMAG demonstrated a dose dependent inhibition of proliferation and induction of apoptosis in all cell lines tested with 17-DMAG 100nM inducing 40% inhibition as compared to control and 200nM inducing 56% inhibition in MM.1S. There was no differential response to 17-DMAG in cell lines tested. The combination of 30uM perifosine and 100nM 17-DMAG resulted in a significant inhibition of proliferation with 76% inhibition as compared to each agent alone (p=0.0001, perifosine alone vs. combination). The combination was synergistic with a combination index of 0.1 according to the Chou-Talalay method. Apoptosis analysis at 48 hrs demonstrated 13.9% apoptosis with perifosine 30uM, 3.1% with 17-DMAG 100nM alone, and 47.9% with the combination of the two agents (p=0.004 combination vs. perifosine). The combination of the AKT inhibitor, perifosine and HSP90 inhibitor, 17-DMAG demonstrated a synergistic anti-proliferative and pro-apoptotic effect on MM cell lines as compared to each agent alone. Cell lines with higher AKT activity were more sensitive to the AKT inhibitor, perifosine. Targeting both the PI3kinase pathway and the heat shock protein response represents an attractive approach to future therapeutic options in relapsed/refractory MM where drug resistance is often a major problem. Furthermore, the differential activity noted among higher AKT activity and lower AKT activity cell lines raises the possibility of tailoring therapy based on AKT expression levels in the future.


2008 ◽  
Vol 158 (5) ◽  
pp. 595-603 ◽  
Author(s):  
Alessandra Fusco ◽  
Ginette Gunz ◽  
Philippe Jaquet ◽  
Henry Dufour ◽  
Anne Laure Germanetti ◽  
...  

ObjectiveTen percent of patients with prolactinoma fail to respond with normalization of prolactin (PRL) and tumor shrinkage under dopamine agonist (DA) therapy. The resistance to treatment is linked to a loss of dopamine receptor 2 (D2DR). Prolactinomas express somatostatin (SST) receptor subtypes, SSTR1, 2, and 5. The aim of this study was to determine whether different SST compounds could overcome the resistance to DA in prolactinomas.Design and methodsThe efficacy of SSTR1, SSTR2, and SSTR5 ligands; the universal SST ligand, SOM230; and the chimeric SST-DA compound, BIM-23A760, was compared with cabergoline in suppressing PRL secretion from primary cultures of ten prolactinomas (six DA responders and four DA resistant). Receptor mRNAs were assessed by quantitative PCR.ResultsThe mean mRNA levels for D2DR, SSTR1, SSTR2, and SSTR5 were 92.3±47.3, 2.2±1.4, 1.1±0.7, and 1.6±0.6 copy/copy β-glucuronidase (β-Gus) respectively. The SSTR1 agonist, BIM-23926, did not suppress PRL in prolactinomas. In a DA-resistant prolactinoma, it did not inhibit [3H]thymidine incorporation. The SSTR5 compound, BIM-23206, produced a dose-dependent inhibition of PRL release similar to that of cabergoline in three DA-sensitive prolactinomas. BIM-23A760 produced a maximal PRL inhibition superimposable to that obtained with cabergoline with a lower EC50 (0.5±0.1 vs 2.5±1.5 pmol/l). In DA-resistant prolactinomas, BIM-23206 and SOM230 were ineffective. Cabergoline and BIM-23A760 produced a partial inhibition of PRL secretion (19±6 and 21±3% respectively).ConclusionAlthough the SSTRs are expressed in prolactinomas, the somatostatinergic ligands analyzed do not appear to be highly effective in suppressing PRL. D2DR remains the primary target for effective treatment of prolactinomas.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2492-2492
Author(s):  
Irene M. Ghobrial ◽  
Mona Melhem ◽  
Ujjal Singha ◽  
Diane George ◽  
Michael Timm ◽  
...  

Abstract We have previously demonstrated that the chemokine receptor CXCR4 and its ligand SDF-1 are important regulators of migration in MM. The objective of this study was to investigate the role of the CXCR4 inhibitor AMD3100 (Sigma, MO) on proliferation, survival, migration, adhesion and invasion in MM. MM cell lines (MM.1S, OPM2 and Kas6/1) were exposed to serial dilutions of SDF-1 (1–100nM) in the presence or absence of the CXCR4 inhibitor AMD3100 (20–100uM) incubated for 16 hrs or the CXCR4 inhibitory antibody MAB171 (RDSystems, MN) 10–800uM or its IgG2 isotype control. Inhibition of proliferation was measured using the MTT proliferation assay. Apoptosis was determined using Annexin V/PI FACS analysis. Migration was determined using a transwell migration assay (Costar, Corning, NY). Cells treated with serial concentrations of AMD3100 or vehicle (sterile water) were washed, placed in serum free medium for two hours, then placed in the migration chambers with 1% FCS medium in the presence of SDF–1 20nM (a concentration previously determined to induce maximum migration in MM cells). After 4 hours of incubation, cells that migrated to the lower chambers were counted. Similarly, adhesion was determined using an adhesion assay (EMD Biosciences, CA) with 96 well plated coated with fibronectin and using MM cells treated with serial dilutions of AMD3100 or vehicle in the presence or absence of serial concentrations of SDF-1 (10–30nM). Invasion was determined using the invasion assay (EMD Biosciences, CA). Serial concentrations of SDF-1 induced a bell-shaped migration curve in MM cells with 10–30nM inducing maximum migration (324% compared to untreated control) while higher doses of SDF-1 (100nM) did not induce migration in all MM cells tested. AMD3100 induced a dose dependent inhibition of migration in MM cells treated with 20nM SDF-1. The maximum effect was demonstrated at 25uM with 48% migration as compared to control. Higher doses of AMD3100 (50–100uM) did not further inhibit migration. The anti-CXCR4 antibody demonstrated a dose dependent inhibition of migration. Anti-CXCR4 10uM inhibited migration to 53% and 200uM to 35%. The effects of higher doses of anti-CXCR4 were not significantly different as compared to 200uM. Serial concentrations of SDF-1 (10–100) induced a dose-response increase in adhesion to fribronectin with 10nM increasing adhesion by 202% as compared to untreated cells and 100nM 462% indicating activation of alpha4 beta1 integrin on MM cells. AMD3100 100uM inhibited adhesion at all doses by 55% as compared to control. Using the invasion assay, SDF-1 100nM induced maximal invasion of MM cells. The effect of SDF-1 on invasion was not abrogated by AMD3100. AMD3100 did not induce significant apoptosis or inhibition of proliferation at all tested doses, in the presence or absence of 20–100nM SDF-1. In summary, AMD3100 inhibited migration and adhesion of MM cells, but not invasion indicating that invasion occurs through non-CXCR4 dependent mechanisms. AMD3100 did not induce apoptosis or inhibition of proliferation indicating that its effect is specific on migration and adhesion. Further experiments to test its role on homing of MM cells in vivo are underway. The future use of this novel agent as an inhibitor of homing of MM cells in clinical trials may be warranted. Supported in part by an ASH Scholar Award and an MMRF grant.


Reproduction ◽  
2000 ◽  
pp. 15-23 ◽  
Author(s):  
K Jewgenow ◽  
M Rohleder ◽  
I Wegner

Despite many efforts, the control of reproduction in feral cat populations is still a problem in urban regions around the world. Immunocontraception is a promising approach; thus the present study examined the suitability of the widely used pig zona pellucida proteins (pZP) for contraception in feral domestic cats. Purified zona pellucida proteins obtained from pig and cat ovaries were used to produce highly specific antisera in rabbits. Antibodies against pZP raised in rabbits or lions were not effective inhibitors of either in vitro sperm binding (cat spermatozoa to cat oocytes) or in vitro fertilization in cats, whereas antibodies against feline zona pellucida proteins (fZP) raised in rabbits showed a dose-dependent inhibition of in vitro fertilization. Immunoelectrophoresis, ELISA and immunohistology of ovaries confirmed these results, showing crossreactivity of anti-fZP sera to fZP and to a lesser extent to pZP, but no interaction of anti-pZP sera with fZP. It is concluded that cat and pig zonae pellucidae express a very small number of shared antigenic determinants, making the use of pZP vaccine in cats questionable. A contraceptive vaccine based on feline zona pellucida determinants will be a better choice for the control of reproduction in feral cats if immunogenity can be achieved.


Author(s):  
Putthiporn Khongkaew ◽  
Phanphen Wattanaarsakit ◽  
Konstantinos I. Papadopoulos ◽  
Watcharaphong Chaemsawang

Background: Cancer is a noncommunicable disease with increasing incidence and mortality rates both worldwide and in Thailand. Its apparent lack of effective treatments is posing challenging public health issues. Introduction: Encouraging research results indicating probable anti-cancer properties of the Delonix regia flower extract (DRE) have prompted us to evaluate the feasibility of developing a type of product for future cancer prevention or treatment. Methods and Results: In the present report, using High Performance Liquid Chromatography (HPLC), we demonstrate in the DRE, the presence of high concentrations of three identifiable flavonoids, namely rutin 4.15±0.30 % w/w, isoquercitrin 3.04±0.02 %w/w, and myricetin 2.61±0.01 % w/w respectively while the IC50 of DPPH and ABTS assay antioxidation activity was 66.88±6.30 µg/ml and 53.65±7.24 µg/ml respectively. Discussion: Our cancer cell line studies using the MTT assay demonstrated DREs potent and dose dependent inhibition of murine leukemia cell line (P-388: 35.28±4.07% of cell viability remaining), as well as of human breast adenocarcinoma (MCF-7), human cervical carcinoma (HeLa), human oral cavity carcinoma (KB), and human colon carcinoma (HT-29) cell lines in that order of magnitude. Conclusion: Three identifiable flavonoids (rutin, isoquercitrin and myricetin) with high antioxidation activity and potent and dose dependent inhibition of murine leukemia cell line and five other cancer cell lines were documented in the DRE. The extract’s lack of cytotoxicity in 3 normal cell lines is a rare advantage not usually seen in current antineoplastic agents. Yet another challenge of the DRE was its low dissolution rate and long-term storage stability, issues to be resolved before a future product can be formulated.


Author(s):  
Virginia Fuochi ◽  
Massimo Caruso ◽  
Rosalia Emma ◽  
Aldo Stivala ◽  
Riccardo Polosa ◽  
...  

Background: The key ingredients of e-cigarettes liquid are commonly propane-1,2-diol (also called propylene glycol) and propane-1,2,3-triol (vegetal glycerol) and their antimicrobial effects are already established. The nicotine and flavors which are often present in e-liquids can interfere with the growth of some microorganisms. Objective: The effect of the combining these elements in e-liquids is unknown. The aim of the study was to investigate the possible effects of these liquids on bacterial growth in the presence or absence of nicotine and flavors. Methods: Susceptibilities of pathogenic strains (Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis and Sarcina lutea) were studied by means of a multidisciplinary approach. Cell viability and antioxidant assays were also evaluated. Results: All e-liquids investigated showed antibacterial activity against at least one pathogenic strain. A higher activity was correlated to the presence of flavors and nicotine. Discussion: In most cases the value of minimal bactericidal concentration is equal to the value of minimal inhibitory concentration showing that these substances have a bactericidal effect. This effect was observed in concentrations up to 6.25% v/v. Antioxidant activity was also correlated to presence of flavors. Over time, the viability assay in human epithelial lung A549 cells showed a dose-dependent inhibition of cell growth. Conclusion: Our results have shown that flavors considerably enhance the antibacterial activity of propane-1,2-diol and propane-1,2,3-triol. This study provides important evidence that should be taken into consideration in further investigative approaches, to clarify the different sensitivity of the various bacterial species to e-liquids, including the respiratory microbiota, to highlight the possible role of flavors and nicotine.


2015 ◽  
Vol 59 (5) ◽  
pp. 2867-2874 ◽  
Author(s):  
Atteneri López-Arencibia ◽  
Daniel García-Velázquez ◽  
Carmen M. Martín-Navarro ◽  
Ines Sifaoui ◽  
María Reyes-Batlle ◽  
...  

ABSTRACTThein vitroactivity of a novel group of compounds, hexaazatrinaphthylene derivatives, against two species ofLeishmaniais described in this study. These compounds showed a significant dose-dependent inhibition effect on the proliferation of the parasites, with 50% inhibitory concentrations (IC50s) ranging from 1.23 to 25.05 μM against the promastigote stage and 0.5 to 0.7 μM against intracellular amastigotes. Also, a cytotoxicity assay was carried out to in order to evaluate the possible toxic effects of these compounds. Moreover, different assays were performed to determine the type of cell death induced after incubation with these compounds. The obtained results highlight the potential use of hexaazatrinaphthylene derivatives againstLeishmaniaspecies, and further studies should be undertaken to establish them as novel leishmanicidal therapeutic agents.


1990 ◽  
Vol 17 (3) ◽  
pp. 177-181
Author(s):  
Peter S. Eriksson ◽  
Elisabeth Hansson ◽  
Lars Rönnbäck

The presence of μ-opioid receptors was demonstrated as effects of receptor stimulation on PGE1-induced cAMP accumulation in neuronal-enriched primary cultures from rat cerebral cortex. Morphine was used as a μ-receptor agonist. There was a dose-dependent inhibition of the PGE1-stimulated cAMP accumulation by morphine, blocked by the μ-receptor antagonist naloxone. These findings suggest that these neuronal cultures express μ-receptors, possibly connected to adenylate cyclase via an inhibitory Gi-protein. The probable use of functional μ-receptors in neurotoxicological tests is discussed.


Sign in / Sign up

Export Citation Format

Share Document