ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs

Blood ◽  
2005 ◽  
Vol 105 (2) ◽  
pp. 650-658 ◽  
Author(s):  
Silvia Muro ◽  
Christine Gajewski ◽  
Michael Koval ◽  
Vladimir R. Muzykantov

AbstractIntercellular adhesion molecule-1 (ICAM-1) is a target for drug delivery to endothelial cells (ECs), which internalize multivalent anti-ICAM nanocarriers (anti-ICAM/NCs) within 15 to 30 minutes. The concomitant ICAM-1 disappearance from the EC surface transiently inhibited subsequent binding and uptake of anti-ICAM/NCs. Within 1 hour, internalized ICAM-1 diverged from anti-ICAM/NCs into prelysosomal vesicles, resurfaced, and enabled uptake of a subsequent anti-ICAM/NC dose. Thus, internalized ICAM-1 was able to recycle back to the plasma membrane. In vivo pulmonary targeting of a second anti-ICAM/NC dose injected 15 minutes after the first dose was decreased by 50% but recovered between 30 minutes and 2.5 hours, comparable to cultured ECs. Anti-ICAM/NCs affected neither EC viability nor fluid-phase endocytosis and traffic to lysosomes. However, lysosomal trafficking of the second dose of anti-ICAM/NCs was decelerated at least 2-fold versus the first dose; hence the major fraction of anti-ICAM/NCs resided in prelysosomal vesicles for at least 5 hours without degradation. Two successive doses of anti-ICAM/NC/catalase protected ECs against H2O2 for at least 8 hours versus 2 hours afforded by a single dose, suggesting that recurrent targeting to ICAM-1 affords longer effects. ICAM-1 recycling and inhibited lysosomal traffic/degradation of subsequent doses may help to prolong activity of therapeutic agents delivered into ECs by anti-ICAM/NCs.

2015 ◽  
Vol 129 (3) ◽  
pp. 259-269 ◽  
Author(s):  
Jin Cai ◽  
Weiwei Guan ◽  
Xiaorong Tan ◽  
Caiyu Chen ◽  
Liangpeng Li ◽  
...  

We set out to investigate whether and how SRY (sex-determining region, Y) DNAs in plasma EVs (extracellular vesicles) is involved in the pathogenesis of atherosclerosis. PCR and gene sequencing found the SRY gene fragment in plasma EVs from male, but not female, patients; EVs from male patients with CAD (coronary artery disease) had a higher SRY GCN (gene copy number) than healthy subjects. Additional studies found that leucocytes, the major source of plasma EVs, had higher SRY GCN and mRNA and protein expression in male CAD patients than controls. After incubation with EVs from SRY-transfected HEK (human embryonic kidney)-293 cells, monocytes (THP-1) and HUVECs (human umbilical vein endothelial cells), which do not endogenously express SRY protein, were found to express newly synthesized SRY protein. This resulted in an increase in the adherence factors CD11-a in THP-1 cells and ICAM-1 (intercellular adhesion molecule 1) in HUVECs. EMSA showed that SRY protein increased the promoter activity of CD11-a in THP-1 cells and ICAM-1 in HUVECs. There was an increase in THP-1 cells adherent to HUVECs after incubation with SRY-EVs. SRY DNAs transferred from EVs have pathophysiological significance in vivo; injection of SRY EVs into ApoE−/− (apolipoprotein-knockout) mice accelerated atherosclerosis. The SRY gene in plasma EVs transferred to vascular endothelial cells may play an important role in the pathogenesis of atherosclerosis; this mechanism provides a new approach to the understanding of inheritable CAD in men.


2006 ◽  
Vol 290 (3) ◽  
pp. R678-R684 ◽  
Author(s):  
O. O. Ogunshola ◽  
V. Djonov ◽  
R. Staudt ◽  
J. Vogel ◽  
M. Gassmann

Excessive erythrocytosis results in severely increased blood viscosity, which may have significant detrimental effects on endothelial cells and, ultimately, function of the vascular endothelium. Because blood-brain barrier stability is crucial for normal physiological function, we used our previously characterized erythropoietin-overexpressing transgenic (tg6) mouse line (which has a hematocrit of 0.8–0.9) to investigate the effect of excessive erythrocytosis on vessel number, structure, and integrity in vivo. These mice have abnormally high levels of nitric oxide (NO), a potent proinflammatory molecule, suggesting altered vascular permeability and function. In this study, we observed that brain vessel density of tg6 mice was significantly reduced (16%) and vessel diameter was significantly increased (15%) compared with wild-type mice. Although no significant increases in vascular permeability under normoxic or acute hypoxic conditions (8% O2for 4 h) were detected, electron-microscopic analysis revealed altered morphological characteristics of the tg6 endothelium. Tg6 brain vascular endothelial cells appeared to be activated, with increased luminal protrusions reminiscent of ongoing inflammatory processes. Consistent with this observation, we detected increased levels of intercellular adhesion molecule-1 and von Willebrand factor, markers of endothelial activation and damage, in brain tissue. We propose that chronic excessive erythrocytosis and sustained high hematocrit cause endothelial damage, which may, ultimately, increase susceptibility to vascular disease.


2021 ◽  
Vol 22 (7) ◽  
pp. 3672
Author(s):  
Anna Di Carlo ◽  
Sara Beji ◽  
Silvia Palmerio ◽  
Mario Picozza ◽  
Marco D’Agostino ◽  
...  

Nucleophosmin (NPM), a nucleolar multifunctional phosphoprotein, acts as a stress sensor in different cell types. NPM can be actively secreted by inflammatory cells, however its biology on endothelium remains unexplored. In this study, we show for the first time that NPM is secreted by human vein endothelial cells (HUVEC) in the early response to serum deprivation and that NPM acts as a pro-inflammatory and angiogenic molecule both in vitro and in vivo. Accordingly, 24 h of serum starvation condition induced NPM relocalization from the nucleus to cytoplasm. Interestingly, NPM was increasingly excreted in HUVEC-derived conditioned media in a time dependent fashion upon stress conditions up to 24 h. The secretion of NPM was unrelated to cell necrosis within 24 h. The treatment with exogenous and recombinant NPM (rNPM) enhanced migration as well as the Intercellular Adhesion Molecule 1 (ICAM-1) but not Vascular cell adhesion protein 1 (VCAM-1) expression and it did not affect cell proliferation. Notably, in vitro tube formation by Matrigel assay was significantly increased in HUVEC treated with rNPM compared to controls. This result was confirmed by the in vivo injection of Matrigel plug assay upon stimulation with rNPM, displaying significant enhanced number of functional capillaries in the plugs. The stimulation with rNPM in HUVEC was also associated to the increased expression of master genes regulating angiogenesis and migration, including Vascular Endothelial Growth Factor-A (VEGF-A), Hepatocyte Growth Factor (HGF), Stromal derived factor-1 (SDF-1), Fibroblast growth factor-2 (FGF-2), Platelet Derived Growth Factor-B (PDGF-B), and Matrix metallopeptidase 9 (MMP9). Our study demonstrates for the first time that NPM is physiologically secreted by somatic cells under stress condition and in the absence of cell necrosis. The analysis of the biological effects induced by NPM mainly related to a pro-angiogenic and inflammatory activity might suggest an important autocrine/paracrine role for NPM in the regulation of both phenomena.


1998 ◽  
Vol 66 (10) ◽  
pp. 4950-4956 ◽  
Author(s):  
Bruno Pouvelle ◽  
Thierry Fusaï ◽  
Catherine Lépolard ◽  
Jürg Gysin

ABSTRACT The cytoadhesion of Plasmodium falciparum laboratory strains and clones to Saimiri brain microvascular endothelial cells (SBEC 17), with chondroitin-4-sulfate (CSA) as the only adhesion receptor, was tested. Only one strain had significant cytoadhesion. However, CSA-specific infected erythrocytes (IRBCs) were detected in all strains after selection of a CSA-specific subpopulation by culturing the few adherent IRBCs. This demonstrates the lack of sensitivity of cytoadhesion microassays for detecting small quantities of CSA-specific IRBCs in cultures or field isolates. Cytoadhesion to CSA is maximal at 24 h of the cycle and decreases with the onset of schizogony, reaching a minimum just before reinvasion. This fluctuation must be taken into account in comparisons of the cytoadhesion of different strains or isolates. The minimum size of CSA for active inhibition was 4 kDa, and a mass of 9 kDa was required for inhibition similar to that obtained with the 50-kDa CSA. In contrast to cytoadhesion to CSA, which is pH independent or maximal at physiological pH (depending on the target endothelial cells), adhesion to CD36 and intercellular adhesion molecule 1 was pH dependent, requiring acidic conditions to be maximal in all cases. Cytoadhesion to CSA may trigger the occlusion of microvessels and cause the acidosis necessary for the other receptors to be fully efficient. If this key role in the mechanisms of sequestration were to be confirmed in vivo, prevalence studies of the CSA cytoadhesion phenotype would have to be reevaluated, because simple cytoadhesion assays do not detect CSA-specific parasites present in very low numbers, and these parasites might then be undetected in the peripheral blood but present in organs in which sequestration occurs, such as the placenta (M. Fried and P. E. Duffy, Science 272:1502–1504, 1996).


2020 ◽  
Vol 9 (2) ◽  
pp. 400 ◽  
Author(s):  
Lamiaa Shalaby ◽  
Menaka Thounaojam ◽  
Amany Tawfik ◽  
Junnan Li ◽  
Khaled Hussein ◽  
...  

ADAM17, a disintegrin and metalloproteinase 17, is a transmembrane metalloproteinase that regulates bioavailability of multiple membrane-bound proteins via ectodomain shedding. ADAM17 activity was shown to contribute to a number of vascular pathologies, but its role in the context of diabetic retinopathy (DR) is not determined. We found that expression and enzymatic activity of ADAM17 are upregulated in human diabetic postmortem retinas and a mouse model of streptozotocin-induced diabetes. To further investigate the contribution of ADAM17 to vascular alterations associated with DR, we used human retinal endothelial cells (HREC) treated with ADAM17 neutralizing antibodies and exposed to glucidic stress and streptozotocin-induced endothelial ADAM17 knockout mice. Evaluation of vascular permeability, vascular inflammation, and oxidative stress was performed. Loss of ADAM17 in endothelial cells markedly reduced oxidative stress evidenced by decreased levels of superoxide, 3-nitrotyrosine, and 4-hydroxynonenal and decreased leukocyte-endothelium adhesive interactions in vivo and in vitro. Reduced leukostasis was associated with decreased vascular permeability and was accompanied by downregulation of intercellular adhesion molecule-1 expression. Reduction in oxidative stress in HREC was associated with downregulation of NAD(P)H oxidase 4 (Nox4) expression. Our data suggest a role for endothelial ADAM17 in DR pathogenesis and identify ADAM17 as a potential new therapeutic target for DR.


2011 ◽  
Vol 208 (8) ◽  
pp. 1721-1735 ◽  
Author(s):  
Michael Schnoor ◽  
Frank P.L. Lai ◽  
Alexander Zarbock ◽  
Ruth Kläver ◽  
Christian Polaschegg ◽  
...  

Neutrophil extravasation and the regulation of vascular permeability require dynamic actin rearrangements in the endothelium. In this study, we analyzed in vivo whether these processes require the function of the actin nucleation–promoting factor cortactin. Basal vascular permeability for high molecular weight substances was enhanced in cortactin-deficient mice. Despite this leakiness, neutrophil extravasation in the tumor necrosis factor–stimulated cremaster was inhibited by the loss of cortactin. The permeability defect was caused by reduced levels of activated Rap1 (Ras-related protein 1) in endothelial cells and could be rescued by activating Rap1 via the guanosine triphosphatase (GTPase) exchange factor EPAC (exchange protein directly activated by cAMP). The defect in neutrophil extravasation was caused by enhanced rolling velocity and reduced adhesion in postcapillary venules. Impaired rolling interactions were linked to contributions of β2-integrin ligands, and firm adhesion was compromised by reduced ICAM-1 (intercellular adhesion molecule 1) clustering around neutrophils. A signaling process known to be critical for the formation of ICAM-1–enriched contact areas and for transendothelial migration, the ICAM-1–mediated activation of the GTPase RhoG was blocked in cortactin-deficient endothelial cells. Our results represent the first physiological evidence that cortactin is crucial for orchestrating the molecular events leading to proper endothelial barrier function and leukocyte recruitment in vivo.


Sign in / Sign up

Export Citation Format

Share Document