scholarly journals Regulation of macrophage procoagulant responses by the tissue factor cytoplasmic domain in endotoxemia

Blood ◽  
2007 ◽  
Vol 109 (12) ◽  
pp. 5251-5259 ◽  
Author(s):  
Jasimuddin Ahamed ◽  
Frank Niessen ◽  
Toru Kurokawa ◽  
Young Kyung Lee ◽  
Gourab Bhattacharjee ◽  
...  

Abstract Tissue factor (TF) is the primary initiator of coagulation, and the TF pathway mediates signaling through protease-activated receptors (PARs). In sepsis, TF is up-regulated as part of the proinflammatory response in lipopolysaccharide (LPS)–stimulated monocytes leading to systemic coagulation activation. Here we demonstrate that TF cytoplasmic domain–deleted (TFΔCT) mice show enhanced and prolonged systemic coagulation activation relative to wild-type upon LPS challenge. However, TFΔCT mice resolve inflammation earlier and are protected from lethality independent of changes in coagulation. Macrophages from LPS-challenged TFΔCT mice or LPS-stimulated, in vitro–differentiated bone marrow–derived macrophages show increased TF mRNA and functional activity relative to wild-type, identifying up-regulation of macrophage TF expression as a possible cause for the increase in coagulation of TFΔCT mice. Increased TF expression of TFΔCT macrophages does not require PAR2 and is specific for toll-like receptor, but not interferon γ receptor, signaling. The presence of the TF cytoplasmic domain suppresses ERK1/2 phosphorylation that is reversed by p38 inhibition leading to enhanced TF expression specifically in wild-type but not TFΔCT mice. The present study demonstrates a new role of the TF cytoplasmic domain in an autoregulatory pathway that controls LPS-induced TF expression in macrophages and procoagulant responses in endotoxemia.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3736-3736
Author(s):  
Anna Falanga ◽  
Alfonso Vignoli ◽  
Marina Marchetti ◽  
Laura Russo ◽  
Marina Panova-Noeva ◽  
...  

Abstract Clinical data suggest an increased thrombotic risk in patients with ET or PV carrying the JAK2V617F mutation. Laboratory data from our group show that ET patients carrying the JAK2V617F mutation are characterized by an enhanced platelet and neutrophil activation status (Falanga et al, Exp Hem 2007) and blood coagulation activation (Marchetti et al, Blood 2008), as compared to JAK2 wild-type ET. Since monocytes significantly contribute to blood coagulation activation as an important source of circulating tissue factor (TF), in this study we aimed to characterize the prothrombotic phenotype of monocytes from ET and PV patients and to evaluate whether and to what extent it is influenced by the JAK2V617F mutation. Twenty-four ET patients (10 JAK2 wild-type; 14 JAK2V617F carriers with 2%–35% mutant allele burden), 27 PV patients (all JAK2V617F carriers, 16 with 9%– 44% and 11 with 60%–100% allele burden, respectively), and 20 age-matched healthy subjects (controls, C) were enrolled into the study. Monocyte-associated TF antigen was measured on the cell surface by whole blood flow-cytometry, in both basal condition and after in vitro stimulation by bacterial endotoxin (lypopolysaccharide, LPS), as well as in cell lysates by ELISA. Monocyte procoagulant activity was evaluated by the Calibrated Automated Thrombogram (CAT) as the capacity of isolated monocyte lysates to induce thrombin generation in normal pool plasma. In basal conditions, significantly (p<0.05) higher surface levels of TF were measured on monocytes from ET (17.1±3.2% positive cells) and PV (24.4±3.7% positive cells) patients compared to C (8.2±1.9% positive cells). Similarly, the total TF antigen content of cell lysates was significantly increased in patients compared to C. The analysis of the data according to JAK2V617F mutational status, showed a gradient of increased TF expression starting from JAK2V617F negative patients (11.7±2.5%), versus JAK2V617F ET and PV subjects with <50% allele burden (20.3±3.6% and 23.2±2.8%, respectively), versus JAK2V617F PV patients with >50% allele burden (26.1±4.2%). The in vitro LPS stimulation significantly increased TF expression on monocytes from all study subjects and C compared to non-stimulated monocytes (p<0.05 for all groups), with a more elevated expression by monocytes from PV and ET patients compared to C. However, the relative increase in TF expression was greater in C (=3.7 fold) compared to both ET (=2.2 fold) and PV (=2 fold) patients. As observed in basal conditions, LPS-induced TF was higher in JAK2V617F positive patients as compared to negative, with the highest expression in JAK2V617F PV carriers with >50% allele load. Thrombin generation induced by monocytes from ET and PV patients was significantly increased compared to controls, as determined by significantly higher thrombin peaks (ET=145±12, PV=142±17, C=72.2±5 nM), and quantity of thrombin generated in time, i.e. the endogenous thrombin potential (ETP) (ET=1143±34, PV=1074±64, C=787±58 nM*min). The JAK2V617F PV subjects with >50% allele burden presented with the highest thrombin generation capacity (peak= 184±34 nM; ETP= 1268±32 nM). Our data indicate that the expression of the JAK2V617F mutation in ET and PV patients may confer to monocytes a different hemostatic phenotype in terms of increased expression of surface TF and thrombin generation capacity. These findings are in agreement with the previous observation of a hypercoagulable state associated with this mutation and suggest a new mechanism linking hemostatic cellular phenotypic alteration to genetic dysfunction in patients with myeloproliferative disease.


Blood ◽  
2009 ◽  
Vol 114 (12) ◽  
pp. 2521-2529 ◽  
Author(s):  
Dongmei Song ◽  
Xiaobing Ye ◽  
Honglei Xu ◽  
Shu Fang Liu

Abstract Although the role of systemic activation of the nuclear factor κB (NF-κB) pathway in septic coagulation has been well documented, little is known about the contribution of endothelial-specific NF-κB signaling in this pathologic process. Here, we used transgenic mice that conditionally overexpress a mutant I-κBα, an inhibitor of NF-κB, selectively on endothelium, and their wild-type littermates to define the role of endothelial-specific NF-κB in septic coagulation. In wild-type mice, lipopolysaccharide (LPS) challenge (5 mg/kg intraperitoneally) caused markedly increased plasma markers of coagulation, decreased plasma fibrinogen level, and widespread tissue fibrin deposition, which were abrogated by endothelial NF-κB blockade in transgenic mice. Endothelial NF-κB blockade inhibited tissue factor expression in endothelial cells, but not in leukocytes. Endothelial NF-κB blockade did not inhibit LPS-induced tissue factor expression in heart, kidney, and liver. Endothelial NF-κB blockade prevented LPS down-regulation of endothelial protein C receptor (EPCR) and thrombomodulin protein expressions, inhibited tissue tumor necrosis factor-α converting enzyme activity, reduced EPCR shedding, and restored plasma protein C level. Our data demonstrate that endothelial intrinsic NF-κB signaling plays a pivotal role in septic coagulation and suggests a link between endothelial-specific NF-κB activation and the impairment of the thrombomodulin-protein C-EPCR anticoagulation pathway.


2008 ◽  
Vol 294 (2) ◽  
pp. L368-L377 ◽  
Author(s):  
Theo J. Moraes ◽  
Raiza Martin ◽  
Jonathan D. Plumb ◽  
Eric Vachon ◽  
Cheryl M. Cameron ◽  
...  

Proteinases can influence lung inflammation by various mechanisms, including via cleavage and activation of protease-activated receptors (PAR) such as PAR2. In addition, proteinases such as neutrophil and/or Pseudomonas-derived elastase can disarm PAR2 resulting in loss of PAR2 signaling. Currently, the role of PAR2 in host defense against bacterial infection is not known. Using a murine model of acute Pseudomonas aeruginosa pneumonia, we examined differences in the pulmonary inflammatory response between wild-type and PAR2−/−mice. Compared with wild-type mice, PAR2−/−mice displayed more severe lung inflammation and injury in response to P. aeruginosa infection as indicated by higher bronchoalveolar lavage fluid neutrophil numbers, protein concentration, and TNF-α levels. By contrast, IFN-γ levels were markedly reduced in PAR2−/−compared with wild-type mice. Importantly, clearance of P. aeruginosa was diminished in PAR2−/−mice. In vitro testing revealed that PAR2−/−neutrophils killed significantly less bacteria than wild-type murine neutrophils. Further, both neutrophils and macrophages from PAR2−/−mice displayed significantly reduced phagocytic efficiency compared with wild-type phagocytes. Stimulation of PAR2 on macrophages using a PAR2-activating peptide resulted in enhanced phagocytosis directly implicating PAR2 signaling in the phagocytic process. We conclude that genetic deletion of PAR2 is associated with decreased clearance of P. aeruginosa. Our data suggest that a deficiency in IFN-γ production and impaired bacterial phagocytosis are two potential mechanisms responsible for this defect.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
Vol 22 (4) ◽  
pp. 1825
Author(s):  
Li Hao ◽  
Aaron J. Marshall ◽  
Lixin Liu

Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32−/− mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32−/− mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32−/− neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32−/− mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2001 ◽  
Vol 21 (24) ◽  
pp. 8565-8574 ◽  
Author(s):  
Anthony J. Greenberg ◽  
Paul Schedl

ABSTRACT The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul White ◽  
Samuel F. Haysom ◽  
Matthew G. Iadanza ◽  
Anna J. Higgins ◽  
Jonathan M. Machin ◽  
...  

AbstractThe folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allen M Andres ◽  
Chengqun Huang ◽  
Eric P Ratliff ◽  
Genaro Hernandez ◽  
Pamela Lee ◽  
...  

Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia in vitro and IPC in hearts (in vivo and ex vivo) to investigate the role of Parkin in mediating cardioprotection. In HL-1 cells, simulated ischemia induced Parkin translocation to mitochondria and mitochondrial elimination. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports implicating p62/SQSTM1 in mitophagy, we found that downregulation of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to simulated ischemia. While wild type mice showed p62 translocation to mitochondria after IPC, Parkin knockout mice exhibited attenuated translocation of p62 to mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection.


2003 ◽  
Vol 198 (10) ◽  
pp. 1517-1525 ◽  
Author(s):  
Arihiro Kano ◽  
Michael J. Wolfgang ◽  
Qian Gao ◽  
Joerg Jacoby ◽  
Gui-Xuan Chai ◽  
...  

Endothelial cells (ECs) are believed to be an important component in the protection from lipopolysaccharide (LPS)-induced endotoxic shock. However, the cellular and molecular mechanism is not well defined. Here, we report that signal transducer and activator of transcription (STAT) 3 is an essential regulator of the antiinflammatory function of ECs in systemic immunity. Because STAT3 deficiency results in early embryonic lethality, we have generated mice with a conditional STAT3 deletion in endothelium (STAT3E−/−). STAT3E−/− mice are healthy and fertile, and isolated ECs initiate normal tube formation in vitro. Conditional endothelial but not organ-specific (i.e., hepatocyte or cardiomyocyte) STAT3 knockout mice show an increased susceptibility to lethality after LPS challenge. The LPS response in STAT3E−/− mice shows exaggerated inflammation and leukocyte infiltration in multiple organs combined with elevated activity of serum alanine aminotransferase and aspartate aminotransferase, indicating organ damage. Concomitantly, proinflammatory cytokines are produced at an exaggerated level and for a prolonged period. This defect cannot be explained by lack of antiinflammatory cytokines, such as interleukin 10 and transforming growth factor β. Instead, we have shown that a soluble activity derived from endothelia and dependent on STAT3 is critical for suppression of interferon γ. These data define STAT3 signaling within endothelia as a critical antiinflammatory mediator and provide new insight to the protective function of ECs in inflammation.


Sign in / Sign up

Export Citation Format

Share Document