scholarly journals NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL

Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 733-740 ◽  
Author(s):  
Maria Luisa Sulis ◽  
Odette Williams ◽  
Teresa Palomero ◽  
Valeria Tosello ◽  
Sasikala Pallikuppam ◽  
...  

Abstract Heterodimerization domain (HD) mutations in NOTCH1 induce ligand-independent activation of the receptor and contribute to the pathogenesis of one-third of human T-cell lymphoblastic leukemias (T-ALLs). Here we report a novel class of activating mutations in NOTCH1 leading to aberrant activation of NOTCH1 signaling in T-cell lymphoblasts. These so-called juxtamembrane expansion (JME) alleles consist of internal duplication insertions in the vicinity of exon 28 of the NOTCH1 gene encoding the extracellular juxtamembrane region of the receptor. Notably, structure-function analysis of leukemia-derived and synthetic JME mutants demonstrated that the aberrant activation of NOTCH1 signaling is dependent on the number of residues introduced in the extracellular juxtamembrane region of the receptor and not on the specific amino acid sequence of these insertions. JME NOTCH1 mutants are effectively blocked by γ-secretase inhibitors and require an intact metalloprotease cleavage site for activation. Overall, these results show a novel mechanism of NOTCH1 activation in T-ALL and provide further insight on the mechanisms that control the activation of NOTCH1 signaling.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 694-694 ◽  
Author(s):  
Maria Luisa Sulis ◽  
Odette Williams ◽  
Valeria Tosello ◽  
Sasikala Pallippukam ◽  
Teresa Palomero ◽  
...  

Abstract Aberrant activation of NOTCH1 signaling induces transformation of T-cell progenitors and plays a prominent role in the pathogenesis of over 50% of human T-cell acute lymphoblastic leukemias (T-ALL), which harbor activating mutations in the heterodimerization (HD) and PEST domains of NOTCH1. Here we report a new class of activating mutations in NOTCH1 in human T-ALL. These so called JuxtaMembrane Expansion (JME) mutants consist of internal tandem duplications of exon 28 and adjacent intronic sequences in the NOTCH1 gene, which result in expansions of the extracellular juxtamembrane region of the NOTCH1 receptor. Western blot analysis of T-ALL cell lines lacking known NOTCH1 mutations demonstrated high levels of activated NOTCH1 protein in Jurkat T-ALL cells, suggesting the presence of an as yet unidentified activating NOTCH1 mutation in this cell line. Sequence analysis of Jurkat NOTCH1 transcripts revealed an internal tandem duplication in exon 28 of NOTCH1, resulting in the insertion of 17 amino acids at position 1740 in the extracelullar juxtamembrane region of the receptor. Subsequent PCR amplification of NOTCH1 exon 28 sequences from 194 primary T-ALL lymphoblast samples identified seven additional in frame insertion mutations ranging from 11 to 36 amino acids in length, all of which were located in the vicinity of codon 1740 in the extracelullar juxtamembrane region of the NOTCH1 receptor. Luciferase assays showed that expression of the NOTCH1 Jurkat JME17 mutant allele induced over 200 fold activation of a NOTCH1 reporter construct compared to controls. Activation of NOTCH1 signaling requires proteolytic cleavage of the receptor, first by an ADAM metalloprotease (S2 clevage) and subsequently by the gamma-secretase complex. NOTCH1 signaling induced by the Jurkat JME17 mutant was completely abrogated by incubation with CompE, a highly active gamma-secretase inhibitor. Consistently, treatment of Jurkat T-ALL cells with CompE resulted in rapid clearance of activated NOTCH1 protein and in marked downregulation of NOTCH1 target genes such as HES1 and DELTEX1. Interestingly, and in contrast with previously described HD mutations, JME NOTCH1 alleles retain an intact HD domain and a protected canonical S2 metalloprotease cleavage site. Thus, we hypothesized that activation of NOTCH1 by JME mutations could be mediated by aberrant metalloprotease cleavage at ectopic S2 sites within the JME insertion sequence. However, mutation of the canonical S2 cleavage abrogated the function of the NOTCH1 Jurkat JME17 mutant allele. Furthermore, analysis of artificially generated JME insertions containing sequences unrelated to the leukemia-derived JME alleles, showed that activation of NOTCH1 by JME mutations depends primarily on the length of the inserted peptides and not on their specific amino acid sequences. Thus, shorter insertions of 5 to 13 amino acids in length induced moderate (5–10 fold) activation of the NOTCH1 receptor, while insertions of 14 amino acids or longer induced marked (>70 fold) increases in NOTCH1 signaling. Overall, these results provide further insight in the mechanisms that control the activation of the NOTCH1 receptor in T-ALL.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5238
Author(s):  
Matthias Kieslinger ◽  
Alexander Swoboda ◽  
Nina Kramer ◽  
Patricia Freund ◽  
Barbara Pratscher ◽  
...  

Alimentary lymphomas arising from T cells are rare and aggressive malignancies in humans. In comparison, they represent the most common anatomical form of lymphoma in cats. Due to the low prevalence in humans, the underlying pathomechanism for these diseases is poorly characterised, limiting experimental analysis and therapeutic exploration. To date, activating mutations of the JAK/STAT core cancer pathway and particularly the STAT5B oncoprotein have been identified in human enteropathy-associated T cell lymphoma. Here, we describe a high homology of human and feline STAT3 and STAT5B proteins and strong conservation at the genomic level. Analysis of 42 samples of feline T cell alimentary lymphoma reveals broad activation of STAT3 and STAT5B. Screening for known activating mutations in STAT3 or STAT5B identifies the presence of the STAT5BN642H driver mutation in feline enteropathy-associated T cell lymphoma in 7 out of 42 (16.67%) samples in total. Regarding lymphoma subtypes, the majority of mutations with 5 out of 17 (29.41%) cases were found in feline enteropathy-associated lymphoma type II (EATL II). This identification of an oncogenic STAT5B driver mutation in felines recapitulates the genetic situation in the corresponding human disease, thereby establishing the cat as a potential new model for a rare and incurable human T cell disease.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2192-2192
Author(s):  
Francesco Zaia ◽  
Elena Boggio ◽  
Davide Rossi ◽  
Eleonora Toffoletti ◽  
Giuseppe Cappellano ◽  
...  

Abstract Abstract 2192 Background. In adults, ITP displays variable clinical presentation and different response to steroid, Rituximab, and other immune suppressive agents. The pathophysiological differences underlying these different behaviours are mostly unknown and a better knowledge of this biological heterogeneity might help identifying more targeted and rationale treatments for this disease. Purpose. To identify immunogenetic features distinguishing ITP patients from control and different subsets of ITP patients based on clinical presentation and responsiveness to steroid or Rituximab. Several biological analyses were based on the model of autoimmune lymphoprolipherative syndrome (ALPS), a pediatric disease due to genetic defects decreasing function of the Fas death receptor involved in shutting off the immune response and cytotoxic cell function. ALPS displays polyclonal lymphoproliferation, peripheral blood (PB) expansion of TCRαβ+ T-cells double negative for CD4 and CD8 (DN T-cells) and autoimmune manifestations frequently including thrombocytopenia. ALPS is mostly due to deleterious mutations of the Fas gene, but the +1239A>C single nucleotide polymorphism (SNP) of the osteopontin gene (OPN) and several variations of the perforin gene (PRF1) can act as disease modifier. Moreover, defective Fas function and these OPN and PRF1 variations are also displayed by subsets of patients with multiple sclerosis, type-I diabetes mellitus, systemic lupus erythematosus, progressive sclerosis, and chronic inflammatory demyelinating polyneuropathy. Patients and Methods. Adult patients with ITP and matched controls were selected for the analyses and stratified in different clinical subsets according to the disease severity and responsiveness to therapy (asymptomatic, steroid or Rituximab sensitive vs. steroid or Rituximab refractory). Analyses included evaluation of Fas-mediated apoptosis in T cell cultures; proportions of DN-T cells in PB; typing of the +1239A>C SNP of OPN and sequencing of PRF1. All patients were also investigated for TCR monoclonality, whereas BCR monoclonality was analysed in Rituximab-untreated patients only. Results. Analysis of Fas function and DN T-cell expansion was assessed in 100 ITP patients and showed that they displayed higher frequency of defective Fas function than the controls (17/100 vs. 5/100; P<0.05). Expansion of DN T-cells was detected in 2/17 (12%) patients displaying defective Fas function and 3/83 (4%) of those with normal Fas function. Analysis of PRF1 and OPN was performed in 64 patients. Sequencing of PRF1 detected three patients carrying two rare variations; two carried the N252S amino acid substitution (previously described in ALPS) and one the novel R385W amino acid substitution. The overall frequency of these rare variations was higher in the patients than in the controls (4.7% vs. 0.8%, P<0.05). By contrast, the OPN +1239A>C SNP displayed a similar distribution in the patients and the controls. TCR monoclonality was assessed in 76 patients and was detected in 4 of them (5%). BCR monoclonality was assessed in 17 patients in PB and bone marrow and it was always absent. No statistical differences of these parameters were detected comparing patients refractory vs. sensitive to either Rituximab or steroid treatments. However, a trend was found for DN T-cell expansion that tended to be more frequent in Rituximab resistant vs. sensitive patients (0/13 vs. 4/20, P=0.13). Conclusions. These preliminary analyses detected some differences between ITP patients and controls suggesting that defects involved in ALPS development may play a role in adult ITP too. Increasing the patient number is needed to confirm these data and, possibly, to detect differences between clinical subgroups. Disclosures: Off Label Use: Rituximab in ITP.


2006 ◽  
Vol 26 (12) ◽  
pp. 4642-4651 ◽  
Author(s):  
Michael J. Malecki ◽  
Cheryll Sanchez-Irizarry ◽  
Jennifer L. Mitchell ◽  
Gavin Histen ◽  
Mina L. Xu ◽  
...  

ABSTRACT The NOTCH1 receptor is cleaved within its extracellular domain by furin during its maturation, yielding two subunits that are held together noncovalently by a juxtamembrane heterodimerization (HD) domain. Normal NOTCH1 signaling is initiated by the binding of ligand to the extracellular subunit, which renders the transmembrane subunit susceptible to two successive cleavages within and C terminal to the heterodimerization domain, catalyzed by metalloproteases and γ-secretase, respectively. Because mutations in the heterodimerization domain of NOTCH1 occur frequently in human T-cell acute lymphoblastic leukemia (T-ALL), we assessed the effect of 16 putative tumor-associated mutations on Notch1 signaling and HD domain stability. We show here that 15 of the 16 mutations activate canonical NOTCH1 signaling. Increases in signaling occur in a ligand-independent fashion, require γ-secretase activity, and correlate with an increased susceptibility to cleavage by metalloproteases. The activating mutations cause soluble NOTCH1 heterodimers to dissociate more readily, either under native conditions (n = 3) or in the presence of urea (n = 11). One mutation, an insertion of 14 residues immediately N terminal to the metalloprotease cleavage site, increases metalloprotease sensitivity more than all others, despite a negligible effect on heterodimer stability by comparison, suggesting that the insertion may expose the S2 site by repositioning it relative to protective NOTCH1 ectodomain residues. Together, these studies show that leukemia-associated HD domain mutations render NOTCH1 sensitive to ligand-independent proteolytic activation through two distinct mechanisms.


2008 ◽  
Vol 82 (10) ◽  
pp. 4965-4973 ◽  
Author(s):  
Antonis Mirsaliotis ◽  
Daniel Lamb ◽  
David W. Brighty

ABSTRACT Viral fusion proteins mediate the entry of enveloped viral particles into cells by inducing fusion of the viral and target cell membranes. Activated fusion proteins undergo a cascade of conformational transitions and ultimately resolve into a compact trimer of hairpins or six-helix bundle structure, which pulls the interacting membranes together to promote lipid mixing. Significantly, synthetic peptides based on a C-terminal region of the trimer of hairpins are potent inhibitors of membrane fusion and viral entry, and such peptides are typically extensively α-helical. In contrast, an atypical peptide inhibitor of human T-cell leukemia virus (HTLV) includes α-helical and nonhelical leash segments. We demonstrate that both the C helix and C-terminal leash are critical to the inhibitory activities of these peptides. Amino acid side chains in the leash and C helix extend into deep hydrophobic pockets at the membrane-proximal end of the HTLV type 1 (HTLV-1) coiled coil, and these contacts are necessary for potent antagonism of membrane fusion. In addition, a single amino acid substitution within the inhibitory peptide improves peptide interaction with the core coiled coil and yields a peptide with enhanced potency. We suggest that the deep pockets on the coiled coil are ideal targets for small-molecule inhibitors of HTLV-1 entry into cells. Moreover, the extended nature of the HTLV-1-inhibitory peptide suggests that such peptides may be intrinsically amenable to modifications designed to improve inhibitory activity. Finally, we propose that leash-like mimetic peptides may be of value as entry inhibitors for other clinically important viral infections.


1999 ◽  
Vol 73 (11) ◽  
pp. 9659-9663 ◽  
Author(s):  
Lélia Delamarre ◽  
Claudine Pique ◽  
Arielle R. Rosenberg ◽  
Vincent Blot ◽  
Marie-Pierre Grange ◽  
...  

ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) transmembrane glycoprotein has a 24-amino-acid cytoplasmic domain whose function in the viral life cycle is poorly understood. We introduced premature-stop mutations and 18 single-amino-acid substitutions into this domain and studied their effects on cell-to-cell transmission of the virus. The results show that the cytoplasmic domain is absolutely required for cell-to-cell transmission of HTLV-1, through amino acids which cluster in a Y-S-L-I tyrosine-based motif. The transmission defect in two motif mutants did not result from a defect in glycoprotein incorporation or fusion. It appears that the Y-S-L-I tyrosine-based motif of the HTLV-1 glycoprotein cytoplasmic domain has multiple functions, including involvement in virus transmission at a postfusion step.


Sign in / Sign up

Export Citation Format

Share Document